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Abstract

We study the creation of high-efficiency controlled population transfer in intersubband transitions of semiconductor
quantum wells. We give emphasis to the case of interaction of the semiconductor quantum well with
electromagnetic pulses with a duration of few cycles and even a single cycle. We numerically solve the effective
nonlinear Bloch equations for a specific double GaAs/AlGaAs quantum well structure, taking into account the
ultrashort nature of the applied field, and show that high-efficiency population inversion is possible for specific pulse
areas. The dependence of the efficiency of population transfer on the electron sheet density and the carrier envelope
phase of the pulse is also explored. For electromagnetic pulses with a duration of several cycles, we find that the
change in the electron sheet density leads to a very different response of the population in the two subbands to pulse
area. However, for pulses with a duration equal to or shorter than 3 cycles, we show that efficient population transfer
between the two subbands is possible, independent of the value of electron sheet density, if the pulse area is π .
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Background
The coherent interaction of electromagnetic fields with
intersubband transitions in semiconductor quantum
wells has led to the experimental observation of sev-
eral interesting and potentially useful effects, such as
tunneling-induced transparency [1,2], electromagneti-
cally induced transparency [3], Rabi oscillations [4,5],
self-induced transparency [5], pulsed-induced quan-
tum interference [6], Autler-Townes splitting [7,8],
gain without inversion [9], and Fano signatures in
the optical response [10]. In most of these stud-
ies, atomic-like multi-level theoretical approaches have
been used for the description of the optical proper-
ties and the electron dynamics of the intersubband
transitions.
Many-body effects arising from the macroscopic car-

rier density have also been included in a large number of
theoretical and experimental studies of intersubband exci-
tation in semiconductor quantum wells [6,10-38]. These
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studies have shown that the linear and nonlinear opti-
cal responses and the electron dynamics of intersubband
quantum well transitions can be significantly influenced
by changing the electron sheet density.
An interesting problem in this area is the creation

of controlled population transfer between two quan-
tum well subbands [23-27,29,30]. This problem was first
studied by Batista and Citrin [23] including the many-
body effects arising from the macroscopic carrier density
of the system. They showed that the inclusion of the
electron-electron interactions makes the system behave
quite differently from an atomic-like two-level system.
To have a successful high-efficiency population transfer
in a two-subband, n-type, modulation-doped semicon-
ductor quantum well, they used the interaction with a
specific chirped electromagnetic field, i.e., a field with
time-dependent frequency. They showed that a combi-
nation of π pulses with time-dependent frequency that
follow the population inversion can lead to high-efficiency
population inversion. Their method was refined in a fol-
lowing publication where only linearly chirped pulses
were used for high-efficiency population transfer [27]
and was also applied to three-subband quantum well
systems [26].
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Different approaches for creating high-efficiency inter-
subband population transfer were also proposed by our
group [24,25,29,30]. Using analytical solutions of the effec-
tive nonlinear Bloch equations [20], under the rotating
wave approximation, we presented closed-form analyti-
cal solutions for the electric field amplitude of the elec-
tromagnetic field that leads to high-efficiency popula-
tion transfer [24,25]. In addition, closed-form conditions
for high-efficiency transfer were also presented [24,29].
Moreover, efficient population transfer is found when a
two-subband system interacts with a strong chirped elec-
tromagnetic pulse, for several values of the chirp rate and
the electric field amplitude [30].
In this article, we continue our work on the creation

of high-efficiency controlled population transfer in inter-
subband transitions of semiconductor quantum wells. We
give emphasis to the case of interaction of the semicon-
ductor quantum well with electromagnetic pulses with
a duration of few cycles and even a single cycle. We
numerically solve the effective nonlinear Bloch equations
[20] for a specific double GaAs/AlGaAs quantum well
structure, taking into account the ultrashort nature of
the applied field, and show that high-efficiency popula-
tion inversion is possible for specific pulse areas. The
dependence of the efficiency of population transfer on
the electron sheet density and the carrier envelope phase
of the pulse is also explored. More specifically, we find
that for electromagnetic pulses with duration of several
cycles, the change in the electron sheet density leads
to a very different response of the population in the
two subbands to pulse area. However, a π pulse with
a duration equal to or shorter than 3 cycles can lead
to efficient population transfer between the two sub-
bands independent of the value of electron sheet density.
We note that the interaction of ultrashort electromag-

netic pulses with atoms has been studied in the past
decade, giving emphasis either to ionization effects [39-
41] or to population dynamics in bound two-level and
multi-level systems [40,42-46]. Also, the interaction of
ultrashort electromagnetic pulses with intersubband tran-
sitions of semiconductor quantum wells has been recently
studied [47,48], but without taking into account the effects
of electron-electron interactions in the system dynamics.

Methods
The system under study is a symmetric double semicon-
ductor quantum well. We assume that only the two lower
energy subbands, n = 0 for the lowest subband and
n = 1 for the excited subband, contribute to the system
dynamics. The Fermi level is below the n = 1 subband
minimum, so the excited subband is initially empty. This
is succeeded by a proper choice of the electron sheet den-
sity. The two subbands are coupled by a time-dependent
electric field E(t). Olaya-Castro et al. [20] showed that the

system dynamics is described by the following effective
nonlinear Bloch equations:

Ṡ1(t) = [ω10 − γ S3(t)] S2(t) − S1(t)
T2

, (1)

Ṡ2(t) = −[ω10 − γ S3(t)] S1(t) + 2[
μE(t)
�

− βS1(t)] S3(t)

− S2(t)
T2

, (2)

Ṡ3(t) = −2[
μE(t)
�

− βS1(t)] S2(t) − S3(t) + 1
T1

. (3)

Here, S1(t) and S2(t) are, respectively, the mean real
and imaginary parts of polarization, and S3(t) is the mean
population inversion per electron (difference of the occu-
pation probabilities in the upper and lower subbands).
Also, μ = ez01 is the electric dipole matrix element
between the two subbands, and the parametersω10,β , and
γ are given by

ω10 = E1 − E0
�

+ πe2

�ε
N
L1111 − L0000

2
, (4)

γ = πe2

�ε
N

(
L1001 − L1111 + L0000

2

)
, (5)

β = πe2

�ε
NL1100 . (6)

Here, N is the electron sheet density, ε is the relative
dielectric constant, e is the electron charge, E0 and E1 are
the eigenvalues of energy for the ground and excited states
in the well, respectively, and Lijkl = ∫ ∫

dzdz′ξi(z)ξj(z′)|z−
z′|ξk(z′)ξl(z), with i, j, k, l = 0, 1. Also, ξi(z) is the envelope
wavefunction for the ith subband along the growth direc-
tion (z-axis). Finally, in Equations 1 to 3, the terms con-
taining the population decay time T1 and the dephasing
time T2 describe relaxation processes in the quantum well
and have been added phenomenologically in the effective
nonlinear Bloch equations. If there is no relaxation in the
system T1,T2 → ∞, then S21(t) + S22(t) + S23(t) = 1.
In comparison with the atomic (regular) optical Bloch

equations [49], we note that in the effective nonlinear
Bloch equations, the electron-electron interactions renor-
malize the transition frequency by a time-independent
term (see Equation 4). The parameter γ consists of two
compensating terms: the self-energy term and the vertex
term [20]. In addition, the applied field contribution is
screened by the induced polarization termwith coefficient
β . The screening is due to exchange correction. Surpris-
ingly, the exchange corrections appear with terms which
are linearly dependent on the electron sheet density, as all
exchange terms which present a nonlinear dependence on
the electron sheet density are exactly canceled out due to
the interplay of self-energy and vertex corrections [20].
For very short electromagnetic pulses, pulses that

include only a few cycles, the field envelope may change
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significantly within a single period. In such a case, one
should first define the vector potential and then use it
to obtain the electric field; otherwise, unphysical results
may be obtained [39-43,47,48]. So, the electric field E(t)
is defined via the vector potential A(t) as E(t) = −∂A/∂t
[39-43,47,48] where

A(t) = A0f (t) cos(ωt + ϕ) . (7)

Here, A0 is the peak amplitude of the vector potential,
f (t) is the dimensionless field envelope, ω is the angular
frequency, and ϕ is the carrier envelope phase of the field.
The form of the electric field becomes

E(t) = ωA0f (t) sin(ωt + ϕ) − A0
∂f
∂t

cos(ωt + ϕ) . (8)

In the above formula, the first term corresponds to an
electromagnetic pulse with a sine-oscillating carrier field,
while the second term arises because of the finite pulse
duration. This second term can be neglected for pulses
with a duration of several cycles, but has an important
effect in the single-cycle regime [39-43,47,48].
If the electron-electron interactions are neglected, then

the nonlinear effective Bloch equations coincide with the
optical Bloch equations of a two-level atom [49]. In this
case, in the limit of no relaxation processes (T1,T2 → ∞),
if the ultrashort pulse effects are neglected and under the
rotating wave approximation, the population inversion,
with the initial population in the lower state, is given by

S3(t) = − cos[
(t)] ,
(t) = −
∫ t

0

μωA0f (t′)
�

dt′ , (9)

where 
(t) is the time-dependent pulse area [49]. At the
end of the pulse, 
(t) takes a constant value that is known
as pulse area θ . Equation 9 clearly shows how important
pulse area can be. If θ is an odd multiple of π , then com-
plete inversion between the two states is found at the end
of the pulse, while if θ is an even multiple of π , then the
population returns to the lower state at the end of the
pulse.

Results and discussion
In the current section, we present numerical results from
the solution of the nonlinear Bloch equations, Equations
1 to 3, for a specific semiconductor quantum well system.
We consider a GaAs/AlGaAs double quantum well. The
structure consists of two GaAs symmetric square wells
with a width of 5.5 nm and a height of 219 meV. The
wells are separated by a AlGaAs barrier with a width of
1.1 nm. The form of the quantum well structure and the
corresponding envelope wavefunctions are presented in
Figure 1.
This system has been studied in several previous works

[20,24,25,28,35-38]. The electron sheet density takes val-
ues between 109 and 7 × 1011 cm−2. These values ensure
that the system is initially in the lowest subband, so the
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Figure 1 Quantumwell structure and corresponding envelope
wavefunctions. The confinement potential of the quantum well
structure under study (blue solid curve) and the energies of the lower
(green lower line) and upper states (red upper line). The envelope
wavefunctions for the ground (dotted curve) and first excited (dashed
curve) subbands.

initial conditions can be taken as S1(0) = S2(0) = 0 and
S3(0) = −1. The relevant parameters are calculated to
be E1 − E0 = 44.955 meV and z01 = −3.29 nm. Also,
for electron sheet density N = 5 × 1011 cm−2, we obtain
πe2N(L1111 − L0000)/2ε = 1.03 meV, �γ = 0.2375 meV,
and �β = −3.9 meV. In all calculations, we include the
population decay and dephasing rates with values T1 = 10
ps and T2 = 1 ps. Also, in all calculations, the angular fre-
quency of the field is at exact resonance with the modified
frequency ω10, i.e., ω = ω10.
In Figure 2, we present the time evolution of the inver-

sion S3(t) for different values of the electron sheet density
for a Gaussian-shaped pulse with f (t) = e−4 ln 2(t−2tp)2/t2p .
Here, tp = 2πnp/ω is the duration (full width at half max-
imum) of the pulse, where np is the number of cycles of
the pulse and can be a noninteger number. The compu-
tation is in the time period [ 0, 4tp] for pulse area θ = π .
For electron sheet density N = 109 cm−2, which is a
small electron sheet density, Equations 1 to 3 are very
well approximated by the atomic optical Bloch equations;
therefore, a π pulse leads to some inversion in the sys-
tem in the case that the pulse contains several cycles.
However, the inversion is not complete as the relaxation
processes are included in the calculation and T2 is smaller
than the pulse duration. In Figure 2a, that is for np =
10, we see that the electron sheet densities have a very
strong influence in the inversion dynamics. For example,
for N = 3 × 1011 cm−2, the population inversion evolves
to a smaller value, and for larger values of electron sheet
density, the final inversion decreases further and even
becomes nonexistent.
A quite different behavior is found in Figure 2b,c,d for

pulses with smaller number of cycles. In Figure 2b, we
see that essentially the inversion dynamics differs slightly
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Figure 2 The time evolution of the inversion S3(t) for a Gaussian pulse. The excitation is on-resonance, i.e., ω = ω10, the pulse area is θ = π ,
and ϕ = 0. (a) np = 10, (b) np = 3, (c) np = 2, and (d) np = 1. Solid curve: N = 109 cm−2, dotted curve: N = 3 × 1011 cm−2, dashed curve:
N = 5 × 1011 cm−2, and dot-dashed curve: N = 7 × 1011 cm−2.
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Figure 3 The time evolution of the inversion S3(t) for a sin-squared pulse. The excitation is on-resonance, i.e., ω = ω10, the pulse area is θ = π ,
and ϕ = 0. (a) np = 10, (b) np = 3, (c) np = 2, and (d) np = 1. Solid curve: N = 109 cm−2, dotted curve: N = 3 × 1011 cm−2, dashed curve:
N = 5 × 1011 cm−2, and dot-dashed curve: N = 7 × 1011 cm−2.
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Figure 4 Final inversion S3(2tp) for sin-squared pulse as a function of pulse area θ . The pulse area is in multiples of π . The excitation is
on-resonance and ϕ = 0. (a) np = 10, (b) np = 3, (c) np = 2, and (d) np = 1. Solid curve: N = 109 cm−2, dotted curve: N = 3 × 1011 cm−2, dashed
curve: N = 5 × 1011 cm−2, and dot-dashed curve: N = 7 × 1011 cm−2.

for N = 109 cm−2, N = 3 × 1011 cm−2, and N =
5 × 1011 cm−2 and all of these values lead to essentially
the same final inversion. There is only a small differ-
ence in the inversion dynamics for the case of N =
7 × 1011 cm−2 that leads to slightly smaller inversion.
For even smaller number of cycles, Figure 2c,d, the inver-
sion dynamics differs slightly for all the values of electron
sheet density, and the final value of inversion is practi-
cally the same, independent of the value of electron sheet
density. We note that the largest values of inversion are
obtained for np = 2 and np = 3 and not for np = 1,
as one may expect, as in the latter case the influence of

the decay mechanisms will be weaker. However, the sec-
ond term on the right-hand side of the electric field of
Equation 8 influences the dynamics for np = 1, and in this
case, the pulse area θ = π does not lead to the largest
inversion [42].
Similar results to that of Figure 2 are also obtained for

the case of sin-squared pulse shape with f (t) = sin2( π t
2tp )

that are presented in Figure 3. In this case, the compu-
tation is in the time period [ 0, 2tp] and the pulse area is
again θ = π . We have also found similar results for other
pulse shapes, e.g., for hyperbolic secant pulses. These
results show that the present findings do not depend on
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Figure 5 Final inversion S3(2tp) for sin-squared pulse as a function of carrier envelope phase ϕ. The carrier envelope phase is in multiples of
π . The excitation is on-resonance and the pulse area is θ = π . (a) np = 2 and (b) np = 1. Solid curve: N = 109 cm−2, dotted curve: N = 3 × 1011

cm−2, dashed curve: N = 5 × 1011 cm−2, and dot-dashed curve: N = 7 × 1011 cm−2.
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the actual pulse shape, as long as a typical smooth pulse
shape is used.
In order to explore further the dependence of the inver-

sion in pulse area, we present in Figure 4 the final inver-
sion, i.e., the value of the inversion at the end of the pulse,
as a function of the pulse area θ for a sin-squared pulse.
We find that for pulses of several cycles, e.g., np = 10, the
pulse areas for maximum inversion can be quite different
than π depending on the value of electron sheet density.
For example, for N = 5 × 1011 cm−2, the pulse area is
about 1.5π , and for N = 7 × 1011 cm−2, the pulse area
is about 2.1π . Similar results have also been obtained for
other pulse shapes, e.g., Gaussian and hyperbolic secant
pulses. The displayed dependence explains the results of
Figure 3a (and of Figure 2a), as one may see that a π pulse
area leads to some final inversion for N = 109 cm−2 and
N = 3 × 1011 cm−2 but gives very small final inversion
for N = 5 × 1011 cm−2 and N = 7 × 1011 cm−2. How-
ever, for pulses with 3 cycles or with a smaller number of
cycles, the maximum inversion occurs for pulse area π or
very close to π (and odd multiples of π if the figures are
extended in higher pulse areas) independent of the value
of electron sheet density.
An interesting effect in the interaction of an ultra-

short electromagnetic pulse with a multi-level system is
the influence of the carrier envelope phase ϕ on the
populations of the quantum states [40,43,45,46,48]. In
Figure 5, we present the dependence of the final inver-
sion on the carrier envelope phase ϕ for a sin-squared
pulse with θ = π for different number of cycles and
electron sheet densities. We find that there is a depen-
dence of the final inversion on the carrier envelope
phase and this dependence is strongest for larger sheet
electron densities and for pulses with smaller number
of cycles.

Conclusions
In this work, we have studied the electron dynamics of
intersubband transitions of a symmetric double quantum
well, in the two-subband approximation, that is coupled
by a strong pulsed electromagnetic field.We have used the
effective nonlinear Bloch equations [20] for the descrip-
tion of the system dynamics, giving specific emphasis
to the interaction of the quantum well structure with
few-cycle pulses. We have found that high-efficiency pop-
ulation inversion is possible for specific pulse areas. The
dependence of the efficiency of population transfer on the
electron sheet density and the carrier envelope phase of
the pulse has also been explored. More specifically, we
have shown that for electromagnetic pulses with a dura-
tion of several cycles, the change in the electron sheet
density leads to a very different response of the population
in the two subbands to pulse area. However, electromag-
netic pulses with pulse area π or close to π and with

duration equal to or shorter than 3 cycles can lead to
efficient population transfer between the two subbands
independent of the value of electron sheet density.
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