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Abstract

Ultraviolet-ozone-treated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)was used as the
anode buffer layer in copper phthalocyanine (CuPc)/fullerene-based solar cells. The power conversion efficiency of
the cells with appropriated UV-ozone treatment was found to increase about 20% compared to the reference cell.
The improved performance is attributed to the increased work function of the PEDOT:PSS layer, which improves the
contact condition between PEDOT:PSS and CuPc, hence increasing the extraction efficiency of the photogenerated
holes and decreasing the recombination probability of holes and electrons in the active organic layers.
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Background
Organic solar cells (OSCs) have attracted significant inter-
ests because of their potential for renewable energy
source, low-cost and large-scale fabrication, and compati-
bility with large-area and flexible substrates [1]. In the past
two decades, the power conversion efficiency (PCE) of
OSCs has been steadily improved, and a PCE exceeding
8% has been demonstrated by using the materials that ex-
hibit a broad absorption with high coefficient in the solar
spectrum and by developing new device configurations
that provide high exciton dissociation efficiency and
charge carrier collection efficiency [2,3]. The mechanism
of OSCs involves the formation of excitons under illumin-
ation, the diffusion of excitons to the donor-acceptor
interface, the dissociation of excitons into electrons and
holes, and the collection of electrons and holes at opposite
electrodes. One of the most important factors in deter-
mining the charge carrier collection efficiency is the inter-
face property of electrode/organic layer. The buffer layer
is often adopted in OSCs to improve the device perform-
ance. A lot of anode buffer layers have been demonstrated,
such as MoO3 [4], V2O5 [4], NiO [5], WO3 [6], and gra-
phene oxide [7]. Conductive poly(3,4-ethylenedioxythio-
phene):poly(styrene sulfonate) (PEDOT:PSS) film presents
many advantages, such as high transparency in the visible
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range, high mechanical flexibility, and excellent thermal
stability. These properties make it beneficial to be used as
the anode buffer layer in OSCs [8]. However, phase separ-
ation of PEDOT and PSS is generally found with the insu-
lating PSS grains atop the as-prepared PEDOT: PSS film
cast from aqueous PEDOT:PSS solution, which leads to a
low conductivity below 1 S/cm and an improper contact
condition between PEDOT:PSS and the following organic
layer [9]. Many strategies have been proposed to address
such an issue, such as adding sorbitol [10-12], glycerol
[11], N-methylpyrrolidone [12], isopropanol [12], dimethyl
sulfoxide [13,14], N,N-dimethyl formamide [13], tetra-
hydrofuran [13], ethylene glycol [14], 2-nitroethanol [14],
1-methyl-2-pyrrolidinone [14], mannitol [15], sodium
p-toluenesulfonate [16], carbon nanotube [17], and penta-
cene [18] into PEDOT:PSS aqueous solution and treating
the as-prepared PEDOT:PSS film with solvents [14,19],
thermal annealing [20], oxygen plasma [21], Ar ion sput-
tering [22], zwitterions [23], salt solution [24], and H2SO4

[25]. However, these methods make the device construc-
tion process more complex and require careful control of
the technologies to avoid the deterioration of the PEDOT:
PSS film properties.
Increased work function and conductivity of PEDOT:

PSS film have been demonstrated by ultraviolet light ir-
radiation [26,27], and the treated PEDOT:PSS has been
adopted as the anode buffer layer in OSCs [28,29].
Tengstedt et al. [30] have proposed that the work function
of PEDOT:PSS film can be increased while maintaining
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Figure 1 I-V characteristics of the cells with PEDOT:PSS (Clevios
P VP Al 4083) anode buffer layer. Treated with UV-ozone for
various times under illumination.
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reasonable conductivity by UV-ozone treatment, which is
further confirmed by Helander et al. [31]. Nagata et al.
[32] have clarified the respective roles of UV light irradi-
ation and exposure to ozone gas on the PEDOT:PSS film,
and they have found that the main role of UV light is to
decompose the chemical bonds in the PEDOT:PSS film,
resulting in a decrease of the conductivity, while the ozone
and atomic oxygen are absorbed and oxidize the surface,
leading to an increase of the work function. Thus, the UV-
ozone treatment is capable of controlling the work func-
tion and conductivity of PEDOT:PSS film, hence allowing
them to be adjusted to the device application. Such UV-
ozone-treated PEDOT:PSS film has been adopted as the
anode buffer layer in organic light-emitting diodes, and
dramatic improvement of efficiency was observed [33,34].
However, the application of UV-ozone-treated PEDOT:
PSS in OSCs has not been exploited. In this paper, UV-
ozone-treated PEDOT:PSS film is adopted as the anode
buffer layer in copper phthalocyanine (CuPc)/fullerene
(C60)-based small molecular OSCs. The power conversion
efficiency of the cell was increased by more than 20%,
compared with the reference cell without UV-ozone treat-
ment. The improvement is primarily attributed to the
increased work function of the PEDOT:PSS film, which
improves the contact condition between PEDOT:PSS and
CuPc, hence increasing the charge carrier collection effi-
ciency and decreasing the charge carrier recombination
probability in the bulk of organic layers.

Methods
Devices were fabricated on pattered indium tin oxide
(ITO)-coated glass substrates with a sheet resistance of 15
Ω/sq. The substrates were routinely cleaned, followed by
UV-ozone treatment for 10 min. The structure of the
OSCs used here was ITO/PEDOT:PSS/CuPc (30 nm)/C60

(40 nm)/4,7-diphenyl-1,10-phenanthroline (8 nm)/Al
(100 nm). Two types of PEDOT:PSS (Clevios P VP Al
4083 (H. C. Starck, Clevios GmbH, Leverkusen, Germany)
and 483095 (Aldrich, St. Louis, MO, USA) with PEDOT/
PSS mass ratio of 1:6 and 1:1.6, respectively) were used
here, and they were spin-coated onto the ITO anode with
a speed of 4,000 rad/min, followed by baking in vacuum at
120 °C for 1 h, which forms a PEDOT:PSS layer of about
30 nm. The PEDOT:PSS films were then treated in a UV-
ozone environment for different times(0, 2, 4, 6, and
10 min) before loading into a high-vacuum chamber. The
other organic layers and the cathode were deposited onto
the substrates via thermal evaporation in the vacuum
chamber at a pressure of approximately 10−7 Torr.
Deposition rates and thickness of the layers were moni-
tored in situ using oscillating quartz monitors. The eva-
poration rates were kept at approximately 1 Å/s for
organic layers and Al cathode. Current–voltage (I-V) char-
acteristics of the devices were measured with a
programmable Keithley 2400 power source (Keithley
Instruments, Inc., Cleveland, OH, USA) both in dark and
under illumination of a Xe lamp light source with an
intensity of 100 mW/cm2. The surface characterization of
PEDOT:PSS films was performed with a Bruker Multi-
Mode 8 atomic force microscope (AFM; BRUKER,
Ettlingen, Germany) in tapping mode. All the measure-
ments were carried out at room temperature under
ambient conditions.

Results and discussion
Figure 1 shows the I-V characteristics of the cells under
illumination with a PEDOT:PSS (Clevios P VP Al 4083)
anode buffer layer treated with UV-ozone for various
times. The parameters extracted from the I-V curves are
summarized in Table 1. The reference cell with un-
treated PEDOT:PSS film shows an open circuit voltage
(VOC), short-circuit current density (JSC), fill factor (FF),
and PCE of 0.496 V, 4.872 mA/cm2, 0.477, and 1.149%,
respectively. It can be found in Figure 1 and Table 1 that
the VOC of the cells with PEDOT:PSS anode buffer layer
is almost constant regardless of the UV-ozone treatment
time. The VOC of the CuPc/C60-based OSCs is reported
to be determined by the energy offset of the highest oc-
cupied CuPc molecular orbital and the lowest unoccu-
pied C60 molecular orbital [35]. The same VOC of the
cells suggests that the UV-ozone treatment on PEDOT:
PSS does not alter this energy offset. In contrast, the JSC
and FF of the cells first increase and then decrease with
further increase of the UV-ozone treatment time. The
cell with 6-min UV-ozone-treated PEDOT:PSS shows
the maximum JSC and FF of 5.897 mA/cm2 and 0.495,
respectively. Consequently, a PCE of 1.429% was
obtained, which was increased by 24% compared to the
reference cell.
Performance of the cells under illumination with a

PEDOT:PSS (Clevios P VP Al 4083) anode buffer layer



Table 1 Performance of cells with Clevios P VP Al 4083
PEDOT:PSS anode buffer layer

UV
treatment
time (min)

VOC JSC FF PCE

(V) (mA/cm2) (%)

0 0.496 4.872 0.477 1.149

2 0.496 5.407 0.486 1.303

4 0.487 5.675 0.489 1.351

6 0.491 5.897 0.495 1.429

10 0.504 4.931 0.466 1.160
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treated with UV-ozone for various times. FF, fill factor;
PCE, power conversion efficiency.
Figure 2 describes the I-V characteristics of the cells

under illumination with a PEDOT:PSS (Aldrich 483095)
anode buffer layer treated with UV-ozone for various
times. The parameters extracted from the I-V curves are
listed in Table 2. The VOC, JSC, FF, and PCE of the refer-
ence cell are 0.493 V, 5.334 mA/cm2, 0.483, and 1.271%,
respectively. The superior performance of the cell with
Aldrich 483095 PEDOT:PSS compared with Baytron P VP
Al 4083 PEDOT:PSS is attributed to the higher conductiv-
ity of the former, which may increase the extraction effi-
ciency of the photogenerated charge carriers. Similarly,
the VOC of the cells are unaffected by the UV-ozone treat-
ment on the PEDOT:PSS layer. In contrast, the JSC and FF
are increased with UV-ozone treatment time. The max-
imum JSC and FF are found with 4-min UV-ozone treat-
ment time, which are 6.099 mA/cm2 and 0.499,
respectively. Correspondingly, the PCE reaches up to
1.529%, which is increased by 20% compared to the refer-
ence cell. These findings suggest that the improved per-
formance of the CuPc/C60-based OSCs can be observed
with UV-ozone-treated PEDOT:PSS as the anode buffer
layer, and this effect is valid for the PEDOT:PSS film with
different conductivities.
Figure 2 I-V characteristics of the cells with PEDOT:PSS (Aldrich
483095) anode buffer layer. Treated with UV-ozone for various
times under illumination.
Performance of the cells under illumination with a
PEDOT:PSS (Aldrich 483095) anode buffer layer treated
with UV-ozone for various times. FF, fill factor; PCE,
power conversion efficiency.
The improvement of the device performance by UV-

ozone treatment may come from two factors: improved
interface contact condition in PEDOT:PSS/CuPc and
increased conductivity of the PEDOT:PSS film. Figure 3
displays the AFM image of the PEDOT:PSS (Clevios P
VP Al 4083) films on ITO anode treated with UV-ozone
for various times. The morphology of the PEDOT:PSS
film without UV-ozone treatment is quite smooth with a
root mean square (RMS) roughness of 1.06 nm, while
the RMS roughnesses of the 2-, 4-, 6-, and 10-min UV-
ozone-treated PEDOT:PSS films are 1.15, 1.10, 1.08, and
1.23 nm, respectively. This finding indicates that the
UV-ozone treatment has little effect on the morphology
of the PEDOT:PSS films. Thus, the PEDOT:PSS morph-
ology change-induced alterations of the optical field dis-
tribution in the active organic layers, the CuPc molecule
stacking mode, and the crystallinity of CuPc layer could
be ruled out for the improved performance of the OSCs.
Tengstedt et al. [30] have found that both the PEDOT
and PSS moistures of the PEDOT:PSS film could be oxi-
dized under UV-ozone treatment, which results in an in-
crease of the work function of the PEDOT:PSS film. The
effect was further confirmed by Helander et al. [31] and
Nagata et al. [32]. Thus, increased work function of
PEDOT:PSS film with UV-ozone treatment can be
expected in this study. Such an effect improves the con-
tact condition between PEDOT:PSS and CuPc, which
increases the extraction efficiency of the photogenerated
holes and decreases the recombination probability of
holes and electrons in the active organic layers. As a re-
sult, both the JSC and FF and, hence, the PCE are
enhanced in the optimized cells.
To exploit the UV-ozone treatment on the conductiv-

ity of the PEDOT:PSS film, the dark current of the cells
with a PEDOT:PSS (Clevios P VP Al 4083) anode buffer
layer treated with UV-ozone for various times was inves-
tigated, as shown in Figure 4. All five cells present
Table 2 Performance of the cells with Aldrich
483095PEDOT:PSS anode buffer layer It is appropriate

UV
treatment
time (min)

VOC JSC FF PCE

(V) (mA/cm2) (%)

0 0.493 5.334 0.483 1.271

2 0.499 5.745 0.504 1.446

4 0.502 6.099 0.499 1.529

6 0.497 5.282 0.472 1.240

10 0.495 5.074 0.459 1.059



Figure 3 AFM images of the ITO/PEDOT:PSS (Clevios P VP Al 4083) films. Treated with various times: (a) 0, (b) 2, (c) 4, (d) 6, and (e) 10 min.
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almost the same the I-V curves. A similar phenomenon
was found in the cells with Aldrich 483095 PEDOT:PSS
as the anode buffer layer (not shown here). Such a fact
indicates that the UV-ozone treatment has little affect
on the conductivity of the PEDOT:PSS film during the
time scale investigated. Furthermore, this finding rules
out the contribution of the increased conductivity of the
PEDOT:PSS layer to the improved device performance.
Thus, the improved device performance is attributed to
the increased work function of the PEDOT:PSS layer
under UV-ozone treatment, which increases the extrac-
tion efficiency of the photogenerated holes and decreases
the recombination probability of holes and electrons in
the active organic layers. The decreased performance of
the cells with prolonged UV-ozone treatment time may
result from the saturation in the change of the work
function, decomposition of the chemical bonds, and/or
formation of ping hole defects in the PEDOT:PSS layer
[32,33], which would decrease the extraction efficiency
of the photogenerated charge carriers.



Figure 4 Dark current density of cells with PEDOT:PSS (Clevios
P VP Al 4083) anode buffer layer. Treated with UV-ozone for
various times.
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Conclusions
In summary, UV-ozone-treated PEDOT:PSS film was
used as the anode buffer layer in CuPc/C60-based OSCs.
The morphology of the PEDOT:PSS film is unaffected
by the UV-ozone treatment. However, the PCE is found
to increase about 20% compared to the reference cell
without UV-ozone treatment. The improved perform-
ance is attributed to the increased work function of the
PEDOT:PSS layer, which increases the extraction effi-
ciency of the photogenerated holes and decreases the re-
combination probability of holes and electrons in the
active organic layers. This work provides a facile and
cost-effective method to improve the performance of
OSCs. Besides, such a strategy may have potential appli-
cations to improve the contact condition between
PEDOT:PSS and metal anode in inverted OSCs where a
PEDOT:PSS/metal bilayer anode is adopted.
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