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Abstract

A method for fabrication of three-dimensional (3D) silicon nanostructures based on selective formation of porous
silicon using ion beam irradiation of bulk p-type silicon followed by electrochemical etching is shown. It opens a
route towards the fabrication of two-dimensional (2D) and 3D silicon-based photonic crystals with high flexibility
and industrial compatibility. In this work, we present the fabrication of 2D photonic lattice and photonic slab
structures and propose a process for the fabrication of 3D woodpile photonic crystals based on this approach.
Simulated results of photonic band structures for the fabricated 2D photonic crystals show the presence of TE or
TM gap in mid-infrared range.
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Background
Periodically modulated refractive-index structures, i.e.,
a photonic crystal which can modulate the flow of
electromagnetic waves, exhibit photonic band gaps
under certain conditions [1,2]. As electron mobility in
a semiconductor can be controlled by engineering the
electronic bands of these materials, electromagnetic
wave propagation inside a photonic crystal may be
manipulated by machining its photonic bands [3].
Silicon-based photonic crystals are one of the most
promising choices due to their easy integration in sili-
con technology, allowing applications in several fields,
such as optical devices, including waveguides [4,5],
resonators [6], etc. A lot of work has been reported
on the fabrication and theoretical study of two-
dimensional (2D) silicon-based photonic crystals [7]
because of the advantages of easy integration and
applications in planar platforms [8], such as planar
waveguides [9,10]. Porous silicon-based photonic crys-
tal is another promising candidate to be integrated in
silicon technology [7,8,11]. To completely manipulate
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the flow of electromagnetic waves, a three-dimensional
(3D) photonic crystal with complete band gap is
required. Many methods have been reported to be
able to fabricate 3D silicon-based photonic crystals
with 3D complete band gap, such as double-angled
reactive ion etching [12], macropore formation in
silicon [13], glancing-angle deposition [14], and col-
loidal self-assembly [15]. One type of 3D photonic
crystal that has attracted great attention is the 3D
woodpile structure. Several techniques have been
reported on the fabrication of 3D silicon-based
woodpile structures, such as silicon double-inverse
method [16] and layer-by-layer approach [17]. How-
ever, in the year 2000, Chow et al. reported the fabri-
cation of a 2D photonic crystal slab capable of fully
controlling light in all three dimensions [18], where
the periodic dielectric structure is in only two dimen-
sions, and index guiding is used to confine light in
the third one. Most of the reported silicon-based pho-
tonic slabs are based on silicon-on-insulator platform
[4-6].
In the present work, a method to fabricate 2D/3D

silicon-based photonic crystals that uses high-energy
proton beam writing and subsequent electrochemical
etching of p-type bulk silicon wafers is presented. This
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Figure 1 Schematic cross-section view of 2D photonic lattice fabrication on silicon substrate. (a) Proton beam-writing process and
resultant defect distribution. (b) Selective formation of porous silicon in subsequent electrochemical etching in HF electrolyte. (c) Removal of
porous silicon in KOH solution.
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technique uses either the whole defect regions at high
ion fluence to completely inhibit the etching process or
localized high defect density at the end-of-range region
of high-energy protons at moderate fluence for the fabri-
cation of silicon structures within the bulk silicon at
certain depths, based on selective formation of porous
silicon in other regions during subsequent anodization.
A finely focused, high-energy ion beam [19] is scanned
over the silicon wafer surface. As the ion beam pene-
trates the silicon, the crystal lattice is damaged, produ-
cing additional defects, which reduces the localized hole
density and hole current [20,21]. The defect density for
light ions, with energies greater than about 50 keV, peaks
close to the end of their range [22]. By pausing the fo-
cused beam of different energy for different amounts of
time at different locations, any pattern of localized dam-
age can be built up. The irradiated wafer is then electro-
chemically anodized in an electrolyte of Hydrofluoric acid
(HF). At a high ion fluence, the irradiated regions com-
pletely inhibit the formation of porous silicon and remain
as silicon, based on which, Teo et al. has reported that fab-
rication of a periodic array of sub-micron diameter pillars
is potentially important for the fabrication of photonic
crystals [23]. While at a moderate ion fluence, only the
buried regions with high defect density inhibit the porous
Figure 2 Titled scanning electron microscope images of silicon pillars
the radius of the pillars and a is the lattice period. (b) Period of 4 μm with
silicon formation process. Thus, as the sample is
etched beyond the depth of the ion range, the struc-
ture starts to become undercut due to isotropic etch-
ing, producing a silicon core that is surrounded by
porous silicon. Multiple-energy proton irradiation can
be used to create localized defects at different depths
within the silicon wafer to fabricate multilevel 3D
structures [24]. By varying the proton energy, the
penetration depth changes, and subsequent etch steps
enable the fabrication of true 3D silicon freestanding
structures.
Additionally in this work, some sample structures of

2D photonic crystals are shown: a square lattice of sili-
con pillars in an air matrix, which utilize the complete
inhibition of etching in irradiated regions, and a 2D pho-
tonic slab of air holes in silicon matrix, which utilizes
the highly damaged regions at the end of range of ions
in silicon. Theoretical photonic band structures of these
structures were calculated, showing a complete trans-
verse magnetic (TM) gap for the first structure and sev-
eral complete transverse electric (TE) gaps for the
second one. To further explore the fabrication of 3D
photonic crystal structure using this approach, the fabri-
cation of 3D silicon-based woodpile structure is pro-
posed, and its initial result is shown.
in square lattice. (a) Period of 2 μm with a large r/a ratio, where r is
a small r/a ratio.



Figure 3 Defect distribution from SRIM calculation. Defect
density distribution along the trajectory of ions for 250-keV and
1-MeV protons in silicon.
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Methods
A nuclear microprobe at the Centre for Ion Beam
Applications, National University of Singapore, was used
[25]. High-energy protons with 200 keV to 1 MeV can be
focused down to 100 nm. By controlling the duration time
of protons on different points of the surface of a 0.02- or
0.4-Ω•cm p-type silicon wafer, designed defect distribu-
tions in the silicon wafers were built. Etching for irradiated
silicon wafers was performed in an electrolyte of HF
(48%): ethanol in the ratio of 1:1, with a current density of
40 mA/cm2 for 0.02-Ω•cm and 60 mA/cm2 for 0.4-Ω•cm
wafers. A further step of dipping in KOH solution
removed the porous silicon.

2D photonic lattice on silicon substrate: silicon pillars
with square lattice
At high ion fluences, which are 1× 1017/cm2 for 0.02-
Ω•cm, and 1× 1016/cm2 for 0.4-Ω•cm wafers, the defect
density along the irradiation regions from the top surface
to the end-of-range region is high enough to completely
Figure 4 Schematic of fabrication of freestanding silicon wires. (a) Pro
cross-section view. (b) Selective formation of porous silicon in subsequent
(d) SEM image of freestanding silicon wires with three different spacings.
inhibit the electrochemical etching processes with the
above etching conditions. As shown in Figure 1a, irradi-
ation of 1-MeV protons with a high ion fluence in bulk
silicon results in defect regions with high-enough density
along the full range of 16.3 μm, which protons can pene-
trate. During electrochemical etching process, porous sili-
con is selectively formed in the nonirradiated regions, as
shown in Figure 1b. The etching time for different current
densities and wafer resistivity was well controlled to keep
the etching depth less than 16.3 μm. After removal of por-
ous silicon in KOH solution, silicon structures on the sub-
strate were obtained, as in Figure 1c.
Patterns with square lattice of silicon pillars were

designed with different periods for proton beam writing.
Figure 2a shows a scanning electron microscope (SEM)
image at 25° tilt. A 0.4-Ω•cm wafer was irradiated with a
square lattice pattern with a 2-μm period using 1-MeV
protons, which were focused to 400 nm in both
directions, with fluence 5 × 1016/cm2. After etching with
60 mA/cm2 for 5 min and removing porous silicon with a
KOH solution, silicon pillars in figure 2a were obtained. In
Figure 2b, a 0.4-Ω•cm wafer was irradiated with a square
lattice with a larger period of 4 μm and a smaller beam
size of 200 nm, with the same fluence, and etched for 6
min at the same current density.
2D freestanding photonic slab: a photonic slab with
square lattice of air hole in silicon matrix
Figure 3 shows the defect density distribution versus depth
for 250-keV and 1-MeV protons in silicon from Stopping
and Ranges of Ions in Matter (SRIM) simulation [22].
Most of the defects concentrate at the end-of-range
regions where the ions stop. At a moderate fluence for
250-keV protons, regions with high-enough defect density
to inhibit formation of porous silicon are only located at a
depth around 2.4 μm; thus, buried silicon wires form sur-
rounded by porous silicon.
To obtain freestanding structures, a high-energy proton

beam of 1 MeV, which has a deep penetration depth in
ton beam-writing process and resultant defect distribution in
electrochemical etching. (c) Removal of porous silicon in KOH solution.



Figure 5 Fabrication of 2D photonic slab with square lattice of air hole in a silicon matrix. (a) Proton beam-writing process and resultant
3D defect distribution. (b) Selective formation of porous silicon in circular regions in subsequent electrochemical etching in HF electrolyte.
(c) SEM image of the freestanding photonic slab structure after removal of porous silicon.
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silicon, was used to irradiate lines with an extremely high
fluence, 1× 1012/cm, at the same area which function as
supports, as in Figure 4a. Line fluence is used here in the
line irradiation case where the size of ion beam is smaller
than the lateral width of high defect regions. In subsequent
electrochemical etching, the etching time and current dens-
ity for different resistivity wafers were carefully controlled
to completely undercut the end-of-range regions of
250-keV protons, but not reach the end-of-range of 1-MeV
protons, as in Figure 4b. Subsequent dipping in dilute KOH
solution removed the porous silicon, and freestanding sili-
con wires supported by thick walls were obtained, as in
Figure 4c. Figure 4d shows freestanding silicon wires with
three different spacings, where 250-keV protons were fo-
cused to 100 nm and irradiated with a line fluence of
1×1011/cm. Based on this, fabrication of a 2D photonic
slab of a square lattice of air holes in a silicon matrix was
designed.
Two sets of lines were irradiated horizontally and

vertically in the same area using 250-keV protons on
0.02-Ω•cm silicon wafers to create defect distribution,
as shown in Figure 5a, in which the defect density at the
intersecting parts of the lines is doubled. Thus, in the
etching process, the surrounding area of the intersect-
ing part is not etched as well, giving rise to the forma-
tion of porous silicon in circular regions, as shown in
Figure 6 Fabrication of 3D woodpile structures. (a) Range of protons in
Regions with high defect density at four different depths using four energi
of the fourth layer is located half of period with respect to the second laye
Figure 5b. After 4 min of etching with a current density
of 40 mA/cm2 and a subsequent removal of porous
silicon, a freestanding 2D photonic slab with a square
lattice of air hole in silicon matrix was obtained, as shown
in Figure 5c. This structure was fabricated with an ion
fluence of 8 × 1010/cm with a period of 1.5 μm.

3D woodpile structure
By tuning the energy of ions, end-of-range regions with
high defect density at moderate ion fluence can be gener-
ated at different depths in the wafer, and after a subsequent
electrochemical anodization, silicon wires at different
depths of the silicon wafer were obtained. SRIM [22] calcu-
lations in Figure 6a show that the range of protons in sili-
con varies from 1.8 to 16.3 μm when the proton energy
increases from 200 keV to 1 MeV.
Here, we propose the fabrication of a 3D woodpile struc-

ture using proton beam writing to generate end-of-range
regions with high defect density at different depths. In
order to fabricate woodpile structure with one period, pro-
tons with four different energies, E1, E2, E3, and E4, will be
required to irradiate lines in the same area with suitable
fluence and alignment, as shown in Figure 6b. Figure 6c
shows an initial result on two-layer freestanding silicon
wires in two directions using 250 and 200-keV protons, re-
spectively, in 0.02-Ω•cm silicon wafers supported by thick
silicon as a function of proton energy from SRIM calculation. (b)
es with accurate alignment (dashed line demonstrates the silicon wires
r). (c) SEM image of the initial result on a two-layer structure.



Figure 7 Photonic band structures of square lattice of Si pillars.
(a) 2D PBS of the structure shown in Figure 2a. (b) 2D PBS of the
structure shown in Figure 2b.

Figure 9 Gap map of photonic slab of square lattice of porous
silicon hole in silicon matrix. With r/a= 0.3125 and h/a= 0.75.
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walls from 1-MeV protons. By carefully controlling the
alignment, ion energy, ion fluence, and etching current
density, a 3D woodpile structure with complete band gap
lying in the mid-infrared (IR) range should be possible.
Figure 8 Photonic band structure for TE-like modes for the
structure in Figure 5(c). 2D photonic slab with square lattice of air
hole in silicon matrix.
Results and discussions
The MIT photonic band package [26] has been used
to study the photonic band structure (PBS) of these
photonic crystal structures. The software is based on
conjugate-gradient minimization of the Rayleigh quo-
tient in a plane-wave basis [27].

PBS for silicon pillars with square lattice in an air matrix
on silicon substrates
Figure 7a,b shows the computed 2D PBS for the experi-
mental structures shown in Figure 2a,b, respectively. In
both figures, a TM photonic gap opens between the first
and second band. However, the gap size is much higher
in Figure 7b. This is due to the different concentration
factors in both structures. In Figure 2b, the radius of the
Si pillars is r= 0.1a, where a is the lattice period, and the
gap opens from 0.422 to 0.495 of the normalized fre-
quency. While the radius of the Si pillar in the structure
of Figure 7a is r= 0.415a, the gap opens from 0.210 to
0.218 of the normalized frequency. As the first photonic
band concentrates its energy in the high-dielectric-
constant region, i.e., in the Si pillar, the second band
concentrates its energy in the low-dielectric-constant re-
gion in order to be orthogonal to the first band [3].
When the ratio r/a is smaller, the different concentration
factors between both bands increase, and the gap size is
higher. If the radius of the Si pillar is too small, the first
band cannot concentrate its energy in them, and the gap
disappears.
On the other hand, in Figure 7a, other gaps open at

higher frequencies. Between the third and fourth bands,
a gap opens from 0.345 to 0.365 of the normalized fre-
quency, and between the sixth and seventh, from 0.513
to 535. However, no TE gap opens in either structure.
The flexibility of the fabrication process allows varying
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the radius of the Si pillar and the lattice period to tune
the frequency ranges where the gaps can be opened for
a specific application.

PBS for photonic slab with square lattice of air hole in
silicon matrix
In this case, as a freestanding structure was studied,
novel approaches were needed. First, the eigenstates of
the slab were calculated using a z-supercell approach,
where guided bands were unaffected. Then, the light
cone was obtained and overlapped [28].
Figure 8 shows PBS for TE-like modes; bands with

even symmetry respect reflections through a z plane
(z directions being the height slab direction) for the
photonic slab of air holes with square lattice in sili-
con matrix shown in Figure 5c, with r/a = 0.3125 and
h/a = 0.75, where r is the radius of the air hole, h is
the thickness of the slab, and a is the period of the
lattice.
It shows two gaps around normalized frequency

a/λ = 0.26 and 0.29, where a=1.5 μm. PBS for TM-like
modes shows no gap. The frequency range and gap size
can be tuned and optimized by varying irradiation and
etching conditions. Photonic crystal structures based on
this approach of selective formation of porous silicon have
an extra degree of tuning from porous silicon, where re-
moval process of porous silicon in KOH etching is not
conducted instead. Figure 9 shows the gap map of poros-
ity for a photonic slab of square lattice of porous silicon
hole in silicon matrix, with r/a=0.3125 and h/a= 0.75,
where r is the radius of the porous silicon hole, h is the
thickness of slab, and a is the period of lattice.

Conclusions
We have shown a highly flexible approach of using elec-
trochemical etching following proton beam writing of
bulk p-type silicon wafers to fabricate 2D/3D silicon-
based photonic crystals. Simulation studies show that
the structure of silicon pillars with square lattice has TM
gaps in the mid-IR range, while the structure of air holes
with square lattice in silicon matrix has TE gaps in the
same wavelength range. Photonic crystals fabricated
using this approach have an extra degree of tuning from
porous silicon. Based on the platform of bulk wafers and
being compatible with silicon technology, this flexible
fabrication method is a promising candidate for the de-
velopment of silicon-based photonic crystals.
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