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Abstract

Porous silicon microcavity (PSiMc) structures were used to immobilize the photosynthetic reaction center (RC)
purified from the purple bacterium Rhodobacter sphaeroides R-26. Two different binding methods were compared
by specular reflectance measurements. Structural characterization of PSiMc was performed by scanning electron
microscopy and atomic force microscopy. The activity of the immobilized RC was checked by measuring the visible
absorption spectra of the externally added electron donor, mammalian cytochrome c. PSi/RC complex was found to
oxidize the cytochrome c after every saturating Xe flash, indicating the accessibility of specific surface binding sites
on the immobilized RC, for the external electron donor. This new type of bio-nanomaterial is considered as an
excellent model for new generation applications of silicon-based electronics and biological redox systems.
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Background

In the last few years, the use of bio-nanocomposites has
been the subject of extensive study. Using a hybrid ma-
terial, it may be possible to harness the advantages of
two different materials at the same time. Several
attempts to fabricate functional biocomposites by differ-
ent groups have been reported [1-6]. Photosynthetic re-
action center (RC) is one of the proteins of high interest,
because it is nature's solar battery, converting light en-
ergy into chemical potential in the photosynthetic mem-
brane, thereby assuring carbon reduction in cells [7,8].
Although RC functions on the nanometer scale, with
nanoscopic power, this is the protein that assures the en-
ergy input practically for the whole biosphere on Earth.
The extremely large quantum yield of the primary
charge separation (close to 100%) [9] in RC presents a
great challenge to use it in artificial light harvesting sys-
tems. However, as biological materials are very sensitive
to the external effects and are generally stable only in
their own environment, to keep them functional after
their isolation, a special vehicle is necessary to hold and
protect them from degradation.
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Numerous investigations have recently focused on
micro- and nanostructured materials due to the drastic
increase in the surface area-to-volume ratio compared
with the bulk materials. One of the promising nano-
structured materials is porous silicon (PSi), well known
for photonic applications, sensors, and novel drug de-
livery methods [10-15]. Various applications of PSi in
bio-nanotechnology are possible due to its advanta-
geous properties namely tunable pore dimensions,
large surface area, multilayered photonic structures,
easy and cheap fabrication method, and biocompatibil-
ity. The exceptional electrical and optical properties
and the particular multilayered photonic structures
offer unique application possibilities in integrated
optoelectronic and biosensing (biophotonic) devices as
well [10,13,14]. On the other hand, meso- and macro-
porous silicon assures good conditions for the penetra-
tion of the required biomolecules. The pore size and
optical properties are adjustable during the wet elec-
trochemical etching process, which is used to fabricate
the well-arranged one-dimensional photonic structure
[16].

In this work, RC was immobilized on the surface of
porous silicon microcavities via two different methods:
covalent binding and non-covalent attachment via a spe-
cific peptide interface (‘peptide binding’). In both cases,
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the RC preserved its activity, but the efficiency of the
two methods turned out to be clearly different.

Methods

Sample preparation

Rhodobacter sphaeroides R-26 cells were grown photo-
heterotrophically [17,18]. RCs were prepared by LDAO (N,
N-dimethyldodecylamine-N-oxide; Fluka AG, St. Gallen,
Switzerland) solubilization and purified by ammonium sul-
fate precipitation, followed by DEAE Sephacel (Sigma-
Aldrich Corporation, St. Louis, MO, USA) anion-exchange
chromatography.

Porous silicon microcavity (PSiMc) structures were pre-
pared by wet electrochemical etching process using
boron-doped p** type silicon wafers (thickness 500 to
550 um) with a 0.002 to 0.004 ohm-cm resistivity, and
with a crystallographic orientation of (100). Silicon sub-
strates were etched at room temperature with an electro-
lyte consisting of HF (48%), ethanol (99.9%), and glycerol
(99.99%), in the volumetric ratio of 3:7:1. Current densities
of 85 and 40 mA/cm® were used to produce high and low
porosity layers, respectively. As-etched PSi samples were
thermally oxidized at 800°C [16].

Binding of RC protein within the PSiMc scaffold was
performed via two different methods: (1) covalent bind-
ing through a three-step conjugation method with 3-
aminopropyl-triethoxysilane (APTES) and glutaraldehyde
(GTA) as cross-linker molecule [14] and (2) peptide
functionalization. In the first method, silanization of the
surface with APTES ensures free amine groups on the
surface. Subsequent treatment by GTA, an amine-
targeted homobifunctional cross-linker molecule, and
finally by RC ensures covalent linkage between APTES
and the protein. The second method (i.e., peptide func-
tionalization) is based on the binding of RC to PSiMc by
strong physical attachment through a hydrophobic pep-
tide layer (SPGLSLVSHMQT). This peptide, elaborated
via phage display technology, reveals a high and specific
binding affinity for the p™* Si material [13].

Atomic force microscopy

Atomic force microscopy (AFM) images were recorded
in air, with an Asylum MFP-3D head equipped with a
Molecular Force Probe 3D controller (Asylum Research,
Santa Barbara, CA, USA). Images were acquired in tap-
ping mode using rectangular silicon cantilevers with a
tip radius smaller than 10 nm; typically 7 nm (Olympus
Micro Cantilever, OMCL-AC240TS, Olympus Corpor-
ation, Shinjiku, Tokyo, Japan). Images were taken at
1 Hz scan rate and digitized in 512 x 512 pixels.

Scanning electron microscopy
Scanning electron microscopy (SEM) was performed by
a Hitachi S-4700 Type II FE-SEM (Hitachi High-Tech,
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Minato-ku, Tokyo, Japan) equipped with a cold field
emission gun operating in the range of 5 to 15 kV. The
samples were mounted on a conductive carbon tape and
sputter-coated by a thin Au/Pd layer in Ar atmosphere
prior to the measurement. Elemental analysis of the
samples was performed using energy-dispersive X-ray
spectroscopy (EDX) with a RONTEC XFlash Detector
3001 (Rontec Holdings AG, Berlin, Germany) coupled
with a silicon drift detector.

Specular reflectometry

Reflectivity spectra were recorded with a Bruker 66 V
Fourier transform infrared spectrometer, using a Bruker
A 510, 11° specular reflection unit (BRUKER AXS
GMBH, Karlsruhe, Germany). The PSi samples were
illuminated with the tungsten source, and the reflected
beam was detected with the silicon diode detector. The
resulting spectra were captured in the range of 25,000 to
9,000 cm™! (400 to 1,100 nm) after each modification
step of PSiMc structures. All spectra were averaged over
100 scans with a spectral resolution of 2 cm™ [13].

Optical spectroscopy

The PSiMc sample containing the bound RCs was
placed in a 1x1-cm spectroscopic cuvette next to its
rear wall facing the Xe flash beam. The cuvette was filled
with buffer (10 mM TRIS, pH 8.0, 100 mM NaCl, 0.03%
LDAO) containing reduced horse heart cytochrome ¢
(Sigma-Aldrich) as electron donorand UQ-0 (2,3-methoxy-
5-methyl-1,4-ubiquinone; Sigma-Aldrich) as electron
acceptor for the light-activated RC. The oxidation of
cytochrome ¢ by RCs bound to PSi was checked by
steady state absorption measurements using a UNICAM
4 spectrophotometer (Unicam Limited, Cambridge, UK).
Cytochrome ¢ was reduced by ascorbate before the
experiments were conducted.

Results and discussion

Morphological characterization

Before binding RC to PSiMc, the surface structure of
this supporting material was explored by AFM and
SEM. The AFM image (Figure 1A) was obtained before
any treatment of PSiMc surface, revealing a high poros-
ity top layer, with a roughness (calculated as root mean
square average (RMS)) of 882 + 150 pm. The pore diam-
eter sizes range from 50 to 90 nm.

The structure of the active surface of the PSiMc (be-
fore and after binding) was also investigated by SEM,
extended by EDX analysis. Well-defined nanostructured
Bragg type PSi multilayers with optical thickness=2\/4
on either side of the thick high porosity active layer in
the middle (optical thickness =\/2) are clearly visible in
the SEM image (Figure 2).
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Figure 1 AFM surface topography image (1x 1 pm) and profile section. The untreated PSiMc (A) and after RC binding (B).
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Binding efficiency measurements

After the chemical procedure of the RC binding (surface
oxidation, silanization, attachment of the RC protein
through the GTA linker), the AFM image showed a
more uniform slick surface (Figure 1B), with a higher
surface roughness, RMS =15.7+0.5 nm. Moreover, due
to the high porosity of the initial structure, the pores
appeared to merge and form larger pores, with a diam-
eter size ranging from 70 to 150 nm to allow the RC
with approximately 10 nm in diameter [19] to penetrate
more easily. The dramatic change in the surface appear-
ance before and after RC protein binding, as the surface

roughness increases, indicates good RC protein

attachment to the PSi scaffold. SEM images also show
that the layers are covered by large amounts of RC
(Figure 3). It must be mentioned, and Figures 2 and 3
show, that the pore size is large enough (7 to 15 times
the RC diameter) to overload the layers of the PSi by
the protein under optimal conditions.

Elemental composition analysis by energy dispersive
X-ray spectroscopy (Figure 4) also proved RC binding to
PSiMc. In the untreated PSiMc devices, the EDX
spectrum showed the abundance of Si at any depth in
the layer structure and the absence of the characteristic
elements of the organic compounds, ie, C, O, or N
(Figure 4A). In RC treated samples, the contribution of
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Figure 2 SEM image revealing cross-sectional view of untreated multilayered structure (PSiMc) supported on bulk silicon substrate.
Dark and light regions correspond to the high and low porosity layers, respectively. Magnified view of the nanostructured multilayer is also
shown.
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Figure 3 SEM image of PSiMc cross section after RC binding.

C, N, and O were significant (Figure 4B), which confirms
the protein infiltration.

Other elements such as Au, Pd, and Al were also
detected to some extent. The gold, palladium, and
aluminum signals originate from the sample pre-
preparation phase (sputtering and sample holders).

The reflectance spectra of the PSiMc were recorded
after each modification step by the infrared spectrom-
eter. Figure 5 compares spectra taken before and after
the peptide functionalization and finally after the RC
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Figure 4 Result of element analysis by EDX for (A) untreated
PSi and (B) treated with 6.0-uM RC. The corresponding elements
found in the samples are also indicated.
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Figure 5 Reflectance spectra of the PSiMc recorded at different

steps of the treatment of the sample. Arrow indicates the red
shift induced in the photonic structure by the RC binding.

binding to the surface of PSiMc. Protein binding causes
a red shift in the reflectance spectra that depends on the
amount of the bound molecules.

Figure 6 shows the efficiency of RC binding via the
two different methods. Line A (peptide method) runs
above line B (GTA method) at any RC concentration, in-
dicating that at the same concentration of RC, the red
shift was always larger in the case of the peptide method
than with the GTA method. It appears that the RC has
bigger affinity to the peptide-coated surface than to the
silanized samples, across the GTA cross-linker, so it is
easier to form a physical binding than a chemical one.
On the other hand, as the peptide coating generates a
more homogenous and hydrophobic surface, the RC can
also coat the surface quite homogeneously. Earlier inves-
tigations have shown that the high hydrophobicity of
membrane proteins seems to be an important factor for
better adsorption and functional characteristics in nano-
pores of FSM (folded-sheet mesoporous silica material)
[20,21], which is probably the case in PSi as well. A suc-
cessful application of specific oligopeptides for support-
ing protein binding to PSi was described recently [13].

The binding of RC to PSiMc can be modeled by satur-
ation characteristics so that it follows straight lines in a
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Figure 6 Magnitude of red shifts of resonance peaks as a
function of incubation concentration of RC. Squares show the
data of the peptide; circles, those of the GTA method.




Hajdu et al. Nanoscale Research Letters 2012, 7:400
http://www.nanoscalereslett.com/content/7/1/400

Page 5 of 6

0.04 -
020 ©® No flash
o1s =—RED cyt
' —OX oyt ® 1st flash
0.10
0.03 ©2nd flash
-~ 0.05
2
s 0.00 +
2 500 520 540 560 580 )
s 0.02 4
2 )
5 o:. .’.
172]
2 o__00000 LX)
< doog™ .: .o.: °© .-.-..-. ...
() o
0.01 -ﬂ .a.? ...’ .-....o.ou.o.o.u
B geboogzags, ouazre
° °
0.00 T T T T T T T )
500 510 520 530 540 550 560 570 580
Wavelength (nm)
Figure 7 Change in cytochrome ¢ spectra in the aqueous medium induced by RC/PSiMc complex after light excitation. Inset: absorption
spectra of oxidized and reduced cytochrome c.

logarithmic representation. The saturation curve for the
GTA method might indicate a slight biphasic character
as compared with the strictly monophasic behavior with
the peptide method. The slope of the fitted line is about
two times larger (12.0 nm) for the peptide method com-
pared with the one found for the initial phase (5.0 nm)
and almost the same as the second phase (13.6 nm) of
the GTA method. Hence, it can be concluded that the
binding affinity of the RCs to the peptide-coated PSi is
about twice as large as to the GTA.

RC photochemistry

The overall electron transfer through the RC in living
organisms and in reconstituted systems is coupled to the
oxidation of cytochrome ¢, (the native electron donor)
on the donor side and to the redox cycle of quinones on
the acceptor side of the protein. Direct optical detection
of cytochrome photooxidation in the cytochrome cycle
is a reliable method of tracking the steps of the RC
photocycle [22,23]. The oxidation of cytochrome ¢ can
be followed by the change in the spectra, i.e., the gradual
decrease in the absorption mainly at 550 nm after every
flash excitation.

Figure 7 shows the change in the cytochrome spectra
after every flash excitation, induced by the immobilized
RC. Inset of Figure 7 shows the spectra of the fully oxi-
dized and fully reduced cytochrome for comparison. In
control experiments, no spectral change could be
observed when the RC/PSiMc complex was removed
from the cuvette, indicating that illumination alone
could not induce cytochrome ¢ oxidation in the solution.

Cytochrome ¢ oxidation shows that the RC photocycle
could be restored after reconstitution of the donor and
acceptor sites with cytochrome ¢ and UQ, respectively.

Hence, the specific binding sites of the PSi-bound pro-
tein stayed accessible for these externally added agents.

Conclusions

Successful infiltration of reaction center into PSiMc pho-
tonic structure and the retention of its photochemical ac-
tivity were demonstrated. After reconstitution of the
donor and acceptor sites, the RC photocycle was also
restored, i.e., the accessibility of the secondary quinone site
and of the cytochrome binding site was not blocked in the
PSiMc matrix. This functional integrity is promising in
terms of further research into the properties and applic-
ability of this photo excitable semiconductor biophotonic
material containing the photosynthetic reaction center, an
exceptionally efficient natural light harvesting system.
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