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Abstract

We report the theoretical comparison of the omnidirectional photonic bandgap (OPBG) of one-dimensional dielectric
photonic structures, using three different refractive index profiles: sinusoidal, Gaussian, and Bragg. For different values
of physical thickness (PT) and optical thickness (OT), the tunability of the OPBG of each profile is shown to depend on
the maximum/minimum refractive indices. With an increase in the value of the maximum refractive index, the
structures with the same PT showed a linear increment of the OPBG, in contrast to the structures with the same OT,
showing an optimal combination of refractive indices for each structure to generate the maximum OPBG. An
experimental verification was carried out with a multilayered dielectric porous silicon structure for all the three profiles.
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Background
Omnidirectional mirrors (OM) can reflect all the incident
light independent of the incidence angle, within a cer-
tain wavelength range [1-10]. Omnidirectional properties
have been shown using one-dimensional photonic crystals
[1], cladded superlattice structures [2], multilayered het-
erostructures [3], ternary photonic bandgap materials [4],
etc. for different systems (for example, Na3AlF6/Ge, SiO2,
BaF2/PbS, GaAs, etc.) [3-5,7]. Due to their potential appli-
cations in optical telecommunications and light-emitting
systems, OMs from SiO2, polypropylene, Si, GaN, etc.
[11-13] have been reported. Several groups have fabri-
cated OMs from porous silicon (PS) in the near-infrared
range due to their advantage over metallic mirrors of
being non-absorbing and non-dispersive [14-18]. Usually,
PS multilayered structures are designed by alternating
low- and high-porosity layers like a Bragg mirror [14]
or a mechanically stable, gradually varying Gaussian-like
periodic profile [15,16]. However, for a required physical
thickness and omnidirectional photonic bandgap (OPBG),
the best choice of the refractive index profile and the com-
bination of indices are still not known. In this work, we
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report a comparative study of the dependence of OPBG
as a function of maximum refractive index for three dif-
ferent refractive index profiles: sinusoidal, Gaussian, and
Bragg type. The comparison was carried out between
the structures with the same optical thickness (OT) and
physical thickness (PT). An experimental verification was
performed with the help of PS multilayered photonic
structures.

Methods
All PS multilayered structures were prepared through
anodic etching of a (100)-oriented p-type crystalline Si
wafer (resistivity 2 to 5 m� cm), under galvanostatic
conditions [19]. For the electrochemical anodization pro-
cess at room temperature, the electrolyte mixture was 1:1
(v/v) of HF (48 wt.%)/ethanol (98 wt.%), respectively. The
current density and the etching duration of each layer
were controlled by a computer-interfaced electronic cir-
cuit where the current density varied from 8.8 to 327
mA/cm2, corresponding to the refractive indices of 2.5
and 1.48, respectively. All the structures consisted of 40
periodic unit cells with a sinusoidal, Gaussian, or Bragg
refractive index profile. The reflectivity measurements
were carried out with a PerkinElmer Lambda 950 UV/VIS
spectrophotometer with a variable angle accessory, Uni-
versal Reflectance Accessory (URA; Waltham, MA, USA),
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for 8° and 68°. The maximum and minimum values of
the incidence angle were limited due to the angular range
covered by URA.

Theoretical overview
The theoretical simulations of the reflectivity spectra were
done using the transfer matrix method for a p-polarized
electromagnetic wave [20]. Briefly, we suppose that an
incident p-polarized electromagnetic wave (EI and HI )
passes through a thin multilayered structure. At the first
interface (I), part of the light reflects and the rest is trans-
mitted. We can relate these light beams using the contour
conditions for an incident electromagnetic wave at the
interface. The transmitted wave has a phase shift by the
time it reaches the next surface (EII and HII ); then, in this
new surface (II), we relate again the reflected and trans-
mitted electromagnetic beams and connect each layer
with a transfer matrix:

[
EI
HI

]
=

[
cos(k0h) i sin(k0h)/YI

YIi sin(k0h) cos(k0h)

] [
EII
HII

]
, (1)

where k0 is the magnitude of the wave vector, h is the opti-
cal path, and YI is a function of the refractive index (nI )
and the transmitted angle (θI ):

YI =
√

ε0
μ0

nI/ cos(θI). (2)

By making the same procedure, we can couple the elec-
tromagnetic field of each interface with the preceding one:

[
EI
HI

]
= MI

[
EII
HII

]
. (3)

For the second interface, the electromagnetic field (EII ,
HII ) can be related to the third interface (EIII , HIII ) by

[
EII
HII

]
= MII

[
EIII
HIII

]
. (4)

Then, incident field (EI , HI ) can be related to the third
field (EIII , HIII ) by multiplying the transfer matrices MI
andMII , resulting in

[
EI
HI

]
= MIMII

[
EIII
HIII

]
. (5)

In general, if P is the number of layers, each one with a
specific value of refractive index n and optical path h, then
the first and last interface fields are related by

[
EI
HI

]
= MIMII ...MP

[
E(P+1)
H(P+1)

]
. (6)

The characteristic matrix of the complete system is the
result of multiplying each individual 2 × 2 matrix:

M = MIMII ...MP =
[
m11 m12
m21 m22

]
. (7)

Finally, the total transfer matrix can be reduced to the
reflection and transmission coefficients, and the equation
can be reformulated in terms of contour conditions.
Hence, the reflectivity is given by

R = r2, (8)

where

r = Y0m11 + Y0Ysm21 − m12 − Ysm22
Y0m11 + Y0Ysm21 + m12 + Ysm22

(9)

and

Ys =
√

ε0
μ0

ns/ cos(θs). (10)

We used Equation 8 to compute the reflectivity spectrum
for a multilayered dielectric structure. The refractive
index profiles were obtained from the following equations:

For sinusoidal,

ni =nmax − nmin
2

sin
(
2πP
N

i − π

2

)

+ nmax + nmin
2

i = {0, . . . , 440}. (11)

For Gaussian (for one period),

ni =
{
nmin i = 0
(nmax−nmin) e−d2(i−11)2/σ 2 +nmin i={1, . . . , 21},

(12)

and for Bragg type,

ni =
{
nmax i = 2k
nmin i = 2k + 1, (13)

where nmax and nmin are the maximum and minimum
refractive indices, respectively, P is the number of periods,
N is the number of layers, i is the label representing an
arbitrary layer within a certain interval, d is the width of
each layer, and σ 2 is the variance.

Results and discussion
Figure 1 shows the comparison of OPBG as a function of
maximum refractive index (nmax), for the structures with
sinusoidal, Gaussian, and Bragg refractive index profiles
for different OT and PT.
The nmax was varied from 2.2 to 2.9, while the miminum

refractive index (nmin) was adjusted to keep the OT con-
stant as (a) 24, (b) 25, and (c) 26 μm. The computed
range of nmax was limited by the experimental capability
to obtain high refractive indices (keeping PS as a possible
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Figure 1 OPBG as a function of nmax for the sinusoidal, Gaussian, and Bragg profiles. Panels (a), (b), and (c) correspond to the OT of 24, 25,
and 26 μm, respectively. Panels (d), (e), and (f) correspond to the PT = 7.76 μm for three different values of minimum refractive index. The OPBG
was computed between 0° and 85° of incidence angle at 99% of the reflectivity.

reference material) and the adjusted values of nmin to keep
the same OT of all the structures. Figure 1a,b,c demon-
strates that for each OT, one can find a particular value
of nmax at which the profile corresponding to the higher
value of OPBG changes. For example, in Figure 1b, the
largest OPBG for nmax range of 2.25 to 2.45, the Bragg-
type profile has to be the preferred choice. For 2.45 <

nmax < 2.57, the sinusoidal profile has the largest OPBG,
but the Gaussian profile prevails for nmax > 2.57. A simi-
lar behavior is observed for higher OTs (Figure 1c). For the
OT of 24 μm, the Bragg-type profile fails to demonstrate
any OPBG (Figure 1a). Although the Gaussian structure
shows the largest OPBG, the corresponding value of nmax
is also very high.
Figure 1d,e,f shows the comparison of the OPBG for the

structures with the same PT, i.e., 7.76 μm. The nmax was
varied from 2.3 to 2.9, while the nmin was kept constant
as (a) 1.1, (b) 1.35, and (c) 1.5. Figure 1a,b,c demonstrates
that the Gaussian refractive index profile always requires
higher refractive index values to obtain the same OPBG as
compared to the sinusoidal refractive index profile. Equiv-
alently, the OPBG obtained for the sinusoidal profile is
always higher as compared to that for the Gaussian profile
for a given nmax. In spite of the failure of the Bragg-type
profile to demonstrate any OPBG for nmin = 1.1 (see
Figure 1d), the tunability to increase/decrease the OPBG
for nmin = 1.35 as compared to the sinusoidal and Gaus-
sian profiles is shown in Figure 1e. One can identify three
particular intervals for the Bragg profile (2.35 < nmax <

2.51, 2.51 < nmax < 2.72, and 2.72 < nmax < 2.9) at
which the OPBG is higher/lower as compared to the sinu-
soidal and Gaussian profiles (Figure 1e). For a higher nmin,
Figure 1f shows a significant enhancement for the Bragg-
type structure, revealing a larger OPBG as compared to
the other profiles. Hence, one can obtain the tunability of
the OPBG in a certain refractive index range, depending
on the available refractive indices and the profile of the
photonic structure.
The result shows that no particular profile can be des-

ignated as the best profile for the complete range of
maximum refractive indices discussed in this work. Apart
from that, one can obtain the tunability of the OPBG in a
certain refractive index range, depending on the available
refractive indices and the profile of the photonic struc-
ture. The vertical dashed line in Figure 1b corresponds
to nmax = 2.5 and the particular OT incorporated in the
forthcoming experimental and simulated results.
Figure 2 shows the experimental (fabricated with PS

multilayers) and simulated reflectivity spectra for the
three types of photonic structures at 8° and 68° of inci-
dence angle. Asmentioned earlier, the results are obtained
for nmax = 2.5 and 25 μm of OT (dashed vertical line in
Figure 1b). OPBG is shown as a vertical gray band. Good
agreement between the calculated (dashed line) and the
experimental spectra (solid line) is observed. The experi-
mental OPBGwas taken with more than 90% of the reflec-
tivity for each multilayered structure. The sinusoidal pro-
file (Figure 2a,d) shows a 95-nm photonic bandgap, while
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Figure 2 Theoretical (dashed line) and experimental (solid line) reflectivity spectra for structures with the same OT. The PBG generated
using the (a) sinusoidal, (b) Gaussian, and (c) Bragg profiles for 8°. The corresponding reflectivity spectra at 68° are shown in panels (d), (e), and (f),
respectively. The overlapping of the experimental PBG between 8° and 68° is shown as a gray band (taken for the reflectance more than or equal
to 90%).

the Gaussian (Figure 2b,e) and Bragg (Figure 2c,f ) profiles
show 45 and 63 nm of OPBGs, respectively. Hence, for the
given value of OT (25 μm) and nmax (2.5), the sinusoidal
profile was shown to have almost twice the OPBG than the
other two profiles under discussion.
On the other hand, Figure 3 shows the experimental

and theoretical results for the photonic structures with the
same PT. A good agreement is observed between theoret-
ical and experimental results. The overlapping of PBG for
different angles wasmeasured as 177 nm for the sinusoidal
profile (Figure 3a,d), while the Gaussian (Figure 3b,e) and
Bragg (Figure 3c,f ) profiles show an OPBG of 130 and
80 nm, respectively. To verify the mechanical stability of
such structures, the surface images of the PS multilay-
ered structure corresponding to each profile are shown
as insets. The surface fractures observed on the Bragg-
type structure (see inset in Figure 3c) are attributed to
the high-porosity contrast between two consecutive layers
[21-23]. For the sinusoidal and Gaussian refractive index
profiles, the inset images (see inset in Figure 3a,b) show
a flat-uncracked surface due to the gradual variation of
the porosity between consecutive layers, which helps in
reducing the stress and enhances the mechanical stabil-
ity [21]. Therefore, a significant reduction in the intensity
of the reflectivity spectra observed for the Bragg-type
photonic structure (Figure 3c,f ), as compared to the the-
oretical simulations, is attributed to the cracked structure
which provokes a higher dispersion of the incident light.

Figure 4 shows the theoretical contour plots for the
reflectivity spectra as a function of the wavelength
and the incident angle for the sinusoidal (Figure 4a,d),
Gaussian (Figure 4b,e), and Bragg (Figure 4c,f ) mirrors.
Figure 4a,b,c corresponds to the photonic structures with
the same OT, while Figure 4d,e,f corresponds to the pho-
tonic sutructures with the same PT. As the angle of inci-
dence is increased, the PBG (red region) decreases for all
the photonic structures. In spite of the largest PBG at 0°
(over the other profiles) for the Bragg mirror, the ability
for keeping a semi-constant stop band, independent of the
incident angle, is better demonstrated for the sinusoidal
and Gaussian structures, showing a more pronounced fall
of the PBG (after 45°) for the Bragg structure, as compared
to the othermirrors. Hence, depending on the application,
the refractive index profile can be selected to have a larger
PBG within a certain angular range (e.g., from 0° to 45°,
Bragg mirrors are a better choice) or a small PBG but for
any possible incidence angle.

Conclusions
We demonstrate that the width of the OPBG depends
on the choice of the maximum, the minimum, and the
difference of the refractive indices for any given pro-
file (sinusoidal, Gaussian, or Bragg-type refractive index
profiles). The structures with the same OT showed an
optimal combination of refractive indices to generate the
largest OPBG, as compared to the structures with the
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Figure 3 Theoretical (dashed line) and experimental (solid line) reflectivity spectra. (a) Sinusoidal, (b) Gaussian, and (c) Bragg refractive index
profiles at 8°. The corresponding reflectivity spectra at 68° are shown in panels (d), (e), and (f), respectively. The intersection of the PBG between 8°
and 68° is shown as a gray band. The nmin and nmax were 1.2 and 2.4, respectively, and the total physical thickness was 7,760 nm for each structure.
The inset image shows an optical microscopy surface zone for (a) sinusoidal (b) Gaussian and (c) Bragg profiles. The scale bar corresponds to 200μm.

same PT which showed a linear increase in the OPBG.
An experimental verification performed with the nanos-
tructured porous silicon dielectric multilayered structures
confirmed the superiority of the sinusoidal profile over

the Gaussian profile to enhance the OPBG and reduce
the structural stress compared to the Bragg structure.
This study can be useful to design the required OPBG
structures for photonic applications.

Figure 4 Contour plot of the reflectivity spectra as a function of the angle and wavelength. (a, d) Sinusoidal, (b, e) Gaussian, and (c, f) Bragg
refractive index profiles. The color scale indicates the reflectivity percentage from 0% (blue) to 100% (red).
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