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Enhanced photoluminescence of multilayer Ge
quantum dots on Si(001) substrates by increased
overgrowth temperature
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Abstract

Four-bilayer Ge quantum dots (QDs) with Si spacers were grown on Si(001) substrates by ultrahigh vacuum
chemical vapor deposition. In three samples, all Ge QDs were grown at 520 °C, while Si spacers were grown at
various temperatures (520 °C, 550 °C, and 580 °C). Enhancement and redshift of room temperature
photoluminescence (PL) were observed from the samples in which Si spacers were grown at a higher temperature.
The enhancement of PL is explained by higher effective electrons capturing in the larger size Ge QDs. Quantum
confinement of the Ge QDs is responsible for the redshift of PL spectra. The Ge QDs’ size and content were
investigated by atomic force microscopy and Raman scattering measurements.
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Background
Si-based light emitter is one of the most important com-
ponents for Si-based photonic integration. Although
many progresses have been made for silicon-based light
emitter in recent years [1-4], it is still a big challenge to
overcome the inefficient band-to-band radiative recom-
bination of silicon. With large band offset and strong
quantum confinement, the self-assembled QDs are
promising structure to enhance the optical characteris-
tics [5]. In the past two decades, the self-assembled Ge
QDs on Si substrates, which are compatible with com-
plementary metal-oxide semiconductor processes, have
been widely studied for Si-based optoelectronic device
applications [6,7]. Unfortunately, the Ge QDs on Si can
only provide a good confinement for the holes, which is
hard to capture the electrons. Lacking of electrons for
radiative recombination in Ge QDs limits its emission
efficiency. A lot of efforts had been made to investigate
luminescence of Ge QDs/Si(001) multilayer structure
[8-10]. However, the radiative recombination in Ge
QDs is still weak, even observed at low temperature
[8,9,11]. How to increase the radiative recombination of
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Ge QDs is still a problem. Usually, carrier collection is a
size-dependent behavior [12]. Therefore, increasing Ge
QDs’ probability of capturing the electrons by increasing
Ge QDs’ size is a feasible way to improve the Ge QDs’
emission performance. However, many studies concen-
trated on lower temperature grown small-size Ge QDs
[6,13], which have stronger quantum confinement and
lower Si-Ge interdiffusion.
In this work, we balance the advantages of small-size

Ge QDs (strong quantum confinement and low Si-Ge
interdiffusion) and the advantages of large-size Ge QDs
(high electron capture probability). Ostwald ripening of
Ge QDs induced by higher Si spaces’ overgrowth
temperature was used to obtain large-size Ge QDs. The
PL spectra obtained from the sample in which Si spacers
were grown at higher temperature show a significant sig-
nal enhancement.
Methods
Three samples were grown by cold-wall UHV-CVD on
Si(001) substrates with a resistivity of 2 to approximately
4 Ω cm, using pure disilane (Si2H6) and germane
(GeH4). The Si substrates were first cleaned using an ex
situ improved RCA wet-chemical cleaning recipe and
then loaded into the pretreatment chamber. Before
growing, the substrate was degassed at 300 °C for several
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Figure 1 Room temperature PL spectra of four-bilayer samples.
With the Si spacer overgrowth at 520 °C (sample A), 550 °C (sample
B), and 580 °C (sample C). The PL decrease around 1,460 nm induce
by the color filter of instrumentation is marked by a line.
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hours in the pretreatment chamber and then was heated
up to 920 °C for 5 min in the growth chamber with a
background pressure lower than 1 × 10−7 Pa to
deoxidize. Next, a 15-nm-thick Si layer was grown at
520 °C (sample A), 550 °C (sample B), and 580 °C (sam-
ple C), respectively, to obtain a flat starting surface.
After a 240-s growth interruption to change the growth
temperature, 5 monolayers (ML, 1 ML= 6.27 × 1014 Ge
atom cm−2) of Ge was deposited at 520 °C with a rate of
0.04 Å/s. After a second growth interruption to change
the growth temperature, the next three bilayer was
grown in the same way. In order to study the morph-
ology of Ge QDs, the top Ge QDs are not covered with
Si cap. For all samples, the thickness of Ge QDs and Si
Figure 2 AFM images (1 μm×1 μm) of four-bilayer samples. With the
580 °C (sample C).
spacer was 5 ML and 15 nm, respectively. All Si spacers
were grown below 600 °C to prevent the Si-Ge interdif-
fusion [14,15]. The reflection high-energy electron dif-
fraction system was used to in situ monitor the growth
of Ge QDs and Si spacers. The surface morphology of
the samples was examined by the AFM, which was per-
formed in contact mode. Scanning transmission electron
microscopy (STEM) was used to study the Ge QDs
growth behavior in the multilayer structure. PL (Raman)
measurements were performed with LabRam HR 800
Raman instrumentation (HORIBA Jobin Yvon Inc., Paris,
France) at room temperature, using a 488-nm-line Ar+

laser with the laser power of 15 (5) mW and an InGaAs
photodetector within 1,150 to 1,600-nm range.

Results and discussion
Room temperature PL results of the three samples are
depicted in Figure 1. Appreciable PL intensity enhance-
ment was observed for sample B (the middle curve in
Figure 1) and sample C (the top curve in Figure 1) in
which Si spacers were grown at 550 °C and 580 °C, re-
spectively. The different PL intensity is induced by vari-
ous Ge QDs’ size. Figure 2 shows the 1 μm×1 μm AFM
images of the surface morphology of three samples. The
Ge QDs’ size differences induced by Ostwald ripening
[16,17] among three samples are observed cleanly. The
morphology of sample A dominates by the small-size
hut shape of Ge QDs, which has the highest density of
QDs in all samples. However, sample A’s PL intensity is
the lowest. Samples B and C have larger Ge QDs and
lower density of Ge QDs; however, the PL intensity
shows a significant enhancement. More details of Ge
QDs AFM statistic analysis is shown in Table 1.
Si spacer overgrowth at 520 °C (sample A), 550 °C (sample B), and



Table 1 Summary of the AFM statistic analysis of samples

Sample Width (nm) Height (nm) Density (1010m−2)

A 32± 5 2.5 ± 0.3 3.8

B 50 ± 8 4.4 ± 0.5 2.4

C 92 ± 10 8.1 ± 1 0.5

30 to 60 2.4 to 5 0.6
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According to Fermi’s age equation [18] and Ge QDs’
sizes from AFM, we estimate the capture probability for
electrons of Ge QDs in different samples. The probabil-
ity in sample C is about 1.6 and 1.2 times higher than
that of sample A and B, respectively. Further, the nonra-
diative recombination channels related to point defects
that form at low growth temperature can decrease the
PL intensity [11,19]. The growth process of Ge QDs in
which Si spacers were grown at higher temperature are
similar to cyclic annealing. It may decrease the point
defects and improve the crystal quality [20].
Figure 3 is the typical STEM image of sample C. It is

found that the Ge QDs have a good vertical coupling in
the multilayer structure. Top Ge QDs have a little larger
size than the buried ones. Overall, the Ge QDs’ size
obtained from STEM image is in agreement with the
results from AFM.
The room temperature PL spectra from all samples

consisted of a broad peak and a shortwave tail. It is note-
worthy that the PL decreases around 1,460 nm, which is
induce by the color filter of instrumentation. The broad
peaks are attributed to the emission of Ge QDs. The
shortwave tail is attributed to the disunity size distribu-
tion of Ge QDs [19] and Si-Ge interdiffusion [9,10]. Al-
though the sample A’s PL spectra is too broad to
distinguish the accurate PL peaks, a remarkable redshift
of PL spectra can be observed among three samples.
The PL peaks of samples B and C are around 1,500 and
Figure 3 STEM image of sample C with the Si spacer overgrowth at 5
1,530 nm, respectively. The energy of the redshift be-
tween samples B and C is 16 meV. This peaks’ shift in
PL spectra is induced by Si-Ge interdiffusion and
quantum confinement effect. PL energy of Ge QDs is
given by the following:

EPL ¼ Egap;Si � ΔEv þ ΔE nmkð Þ; ð1Þ

where Egap,Si is the bulk Si band gap; ΔEv, the valence
band offset of Ge on Si which depended on the content
of the Ge QDs; and ΔE(nmk), the confinement energy
shift of the Ge QDs. Therefore, we calculate the average
content and the energy shift of the Ge QDs in the
samples.
Figure 4 shows the Raman spectra of the three sam-

ples. The Raman peaks related to scattering at the Ge-
Ge vibrations (about 300 cm−1) and the Si-Ge vibrations
(approximately 415 cm−1) accompanying with a small
local Si-Si vibrations (about 430 cm−1) can be seen in
the spectra. Raman intensity enhancement and a little
shift of Si-Ge peak is observed. The Raman intensity en-
hancement indicates that the growth process of Ge QDs
in which Si spacers were grown at higher temperature
benefits its crystal quality. The content of Ge QDs can
be calculated from the ratio between the integrated in-
tensities of the Raman peaks corresponding to the Ge-
Ge and Ge-Si bonds, IGe-Ge and ISi-Ge [21,22]:

x ¼ 2IGe�Ge=IGe�Si

αþ 2IGe�Ge=IGe�Si
ð2Þ

The parameter α is a constant which depends on the
experimental conditions. We obtained α from the
Raman spectra of many samples with various composi-
tions of Ge-rich GexSi1 − x layers, in which the Ge con-
tents are calculated from X-ray diffraction
measurements. In this way, we determined the coeffi-
cient α= 1 for our experimental conditions. The average
80 °C. The length scale is 50 nm.



Figure 4 Raman spectra of three samples. With the Si spacer
overgrowth at 520 °C (sample A), 550 °C (sample B), and 580 °C
(sample C).
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Ge contents in Ge QDs of three samples are 71%, 70%,
and 70% corresponding to samples A, B, and C, respect-
ively. The difference of Ge contents in Ge QDs induces
the shift of Si-Ge peak. The average Ge contents of Ge
QDs were almost similar; therefore, the Si-Ge interdiffu-
sion is not the reason for the redshift of PL spectra.
Further, we calculate the energy shift in QDs by the
well-known expression:

ΔE nmkð Þ ¼ πh2

2m�
n2

h2
þm2

w2
þ k2

w2

� �
ð3Þ

where n, m, k= 1, 2,. . . are the quantum numbers for
coordinates z, x and y, respectively. m* = 0.28m0 is the
effective mass of heavy holes of Ge (m0 is the mass of a
free electron). According to Equation 3, the value of
ΔE111 = 22 and 7 meV corresponding to samples B and
C. In this way, the redshift of PL is 15 meV. It can be
seen that the experimental data is in good agreement
with the results of calculations based on the model used
here. Therefore, the reason of redshift of PL spectra is
the quantum confinement in Ge QDs.
Besides, we notice some interesting square nanopits’

morphology, with a depth of about 7 nm and contains
small Ge QDs which are formed in the Si spacer layer
(Figure 2A). Similar morphology was described in the lit-
erature [23]. They believe that Si spacer grown at low
temperature has higher strain. The Si atoms of high-
strained Si mounds formed over the Ge QDs migrate to
the surrounding area responsible for the nanopits.

Conclusions
In summary, we obtain large-size Ge QDs below 600 °C
by Ostwald ripening of Ge QDs which is induced by
higher Si spaces’ overgrowth temperature. Enhancement
and redshift of room temperature PL were observed
from the sample which have larger size Ge QDs. Large-
size Ge QDs have more probability to capture the elec-
trons for radiative recombination which is responsible
for the PL intensity enhancement. Si spacers grown at
higher temperature can improve the crystal quality. The
redshift of PL peaks is attributed to the quantum con-
finement of Ge QDs.
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