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Abstract

Cylindrical nanostructures, namely, nanowires and pores, with rectangular and circular cross section are examined
using mirror boundary conditions to solve the Schrödinger equation, within the effective mass approximation. The
boundary conditions are stated as magnitude equivalence of electron's Ψ function in an arbitrary point inside a
three-dimensional quantum well and image point formed by mirror reflection in the walls defining the
nanostructure. Thus, two types of boundary conditions - even and odd ones - can be applied, when Ψ functions in
a point, and its image, are equated with the same and the opposite signs, correspondingly. In the former case, the
Ψ function is non-zero at the boundary, which is the case of a weak confinement. In the latter case, the Ψ function
vanishes at the boundary, corresponding to strong quantum confinement. The analytical expressions for energy
spectra of electron confined within a nanostructure obtained in the paper show a reasonable agreement with the
experimental data without using any fitting parameters.
Background
Nanostructures (NS) of different kinds have been ac-
tively studied during the last two decades, both theoret-
ically and experimentally. A special interest was focused
on quasi-one-dimensional NS such as nanowires, nanor-
ods, and elongated pores that not only modify the main
material's parameters, but are also capable of introdu-
cing totally new characteristics such as optical and elec-
trical anisotropy, birefringence, etc. In particular, the
existence of nanoscale formations on the surface (or em-
bedded into semiconductor) result in quantum confine-
ment effects. As the motion of the carriers (or excitons)
becomes restrained, their energy spectra change, moving
the permitted energy levels towards higher energies as a
consequence of confinement. In the experimental mea-
surements, such modification would be noticed as a
blueshift of energy-related characteristics, such as, for
example, the edge of absorption. This paper is dedicated
to the theoretical investigation of confined particle prob-
lem, aiming to explain the available experimental data
basing on geometry of corresponding nanoparticles
* Correspondence: vorobiev@qro.cinvestav.mx
1CINVESTAV-Querétaro, Libramiento Norponiente 2000, Fracc. Real de
Juriquilla, Querétaro, QRO 76230, Mexico
Full list of author information is available at the end of the article

© 2012 Vorobiev et al.; licensee Springer. This i
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
present in the particular material. Here, we focus on
elongated NS that can be approximated as prisms or
cylinders with different shapes of cross section.
The theoretical treatment of NS is based on the solution

of the Schrödinger equation, usually within the effective
mass approximation [1-4], although for small NS, such ap-
proach can be questioned because the symmetry describ-
ing a nanoparticle may not inherit its shape symmetry but
would rather depend on atomistic symmetry [5]. In
addition, at small scale, it becomes necessary to take into
account atomic relaxation and piezoelectric phenomena
[6] that may strongly influence the energy states of con-
fined particles and split their energy levels. The detailed
consideration of these phenomena can be accounted using
the pseudopotential method [7] introduced by Zunger's
group that, after a decade, became a standard energy level
model for detailed description of quantum dots. However,
in cases when dimensions of nano-objects are large
enough to validate the effective mass approximation, it is
possible to obtain analytical solution to the problem of a
particle confined within a quantum dot.
An important element of the quantum mechanical de-

scription is the boundary conditions; the traditional im-
penetrable wall conditions (1) are not always realistic and,
(2) in many cases (depending on the shape of NS), could
not be written in simple analytical form, thus complicating
the further analysis. To overcome these problems, we
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proposed to use a mirrorlike boundary condition [8-10]
assuming that the electron confined in an NS is specularly
reflected by its walls acting as mirrors. In addition to a sig-
nificant simplification of problem solution, this method
favors the effective mass approximation.
Within the same framework, one can study pores as

‘inverted’ nanostructures (i.e., a void surrounded by semi-
conductor material) considering the ‘reflection’ of the par-
ticle's wave function from the surfaces limiting a pore.
Thus, one will obtain essentially the same solution of the
Schrödinger equation (and the energy spectrum) for both
the pore and NS of the same geometry and size. A previ-
ous attempt to treat walls of a quantum system as mirrors
in quantum billiard problem [11] yielded quite a compli-
cated analytical form of the boundary conditions that
made the solution of Schrödinger equation considerably
more difficult.
In our treatment of the NS boundary as a mirror, the

boundary condition equalizes absolute values of the par-
ticle's Ψ function in an arbitrary point inside the NS and
the corresponding image point with respect to a mirror-
reflective wall. Thus, depending on the sign of the equa-
ted Ψ values, one will obtain even and odd mirror
boundary conditions. For the case of odd mirror bound-
ary conditions (OMBC), Ψ functions in real point and its
images should have the opposite sign, which means that
the incident and reflected de Broglie waves cancel each
other at the boundary. This case is equivalent to the im-
penetrable walls with vanishing Ψ function at the bound-
ary, representing a ‘strong’ confinement case. However,
some experimental data (see, e.g., [4]) show the evidence
that a particle may penetrate the barrier, later returning
into the confined volume. Thus, the wave function will
not vanish at the boundary, and the system should be
considered as a ‘weak’ confinement case as long as
the particle flux through the boundary is absent. This
case corresponds to even mirror boundary conditions
(EMBC), when Ψ function in real point and its images
are the same. Below, we analyze solutions of the Schrö-
dinger equation for several cylindrical structures, using
mirror boundary conditions of both types and making
comparison of the energy spectra obtained with experi-
mental data found in the literature.

Methods
We start with the simplest case that could be easily
treated on the basis of traditional approach - a NS
shaped as a rectangular prism with a square base
(with the sides a = b oriented along the axes x and y;
the side c> a is set along the z direction). Assuming,
as it is usually done in the literature, the absence of a
potential inside the NS and separating the variables,
we look for the solution of the stationary Schrödinger
equation ΔΨ + k2Ψ = 0 (where k2 = 2mE/ħ2 and m
being the particle's effective mass) as the product of
plain waves propagating in both directions along the co-
ordinate axes:

Ψ ¼
Y
j

Ψ j xj
� �

¼
Y
j

Aj exp ikjxj
� �þ Bj exp �ikjxj

� �� � ð1Þ

For this case, the even mirror boundary conditions are
as follows [10]:

Ψ x; y; zð Þ ¼ Ψ �x; y; zð Þ ¼ Ψ x;�y; zð Þ
¼ Ψ x; y;�zð Þ ¼ Ψ 2a� x; y; zð Þ
¼ Ψ x; 2b� y; zð Þ ¼ Ψ x; y; 2c� zð Þ ð2Þ

That renders the following solution (Equation 1) of
the Schrödinger equation:

Ψ x; y; zð Þ ¼ A cos kxx cos kyy cos kzz ð3Þ
with wave vector components

kxa ¼ πnx; kyb ¼ πny and kzc ¼ πnz ð4Þ
It gives the following energy spectrum:

E ¼ h2

8m
n2x
a2

þ n2y
b2

þ n2z
c2

 !
or

h2

8m

n2x þ n2y
a2

þ n2z
c2

 !
ð5Þ

The odd mirror boundary conditions are obtained
from Equation 2 by inverting the sign of the left-hand-
side function. The solution will then be as follows:

Ψ x; y; zð Þ ¼ B sin kxx sin kyy sin kzz ð6Þ
The wave vector components will be the same as that

presented in Equation 4, yielding the same energy
spectrum (Equation 5). Using the traditional impene-
trable wall boundaries, one will also obtain the solution
in the form (Equation 6) that coincides with the OMBC
solution that has a vanishing Ψ function at the bound-
ary. Therefore, the energy spectrum is the same for both
types of mirror boundary conditions and impenetrable
wall boundary, although the solutions themselves are
not equal. In [7], we demonstrated that for NS of spher-
ical shape, the energy spectrum found with EMBC (weak
confinement) is different from that corresponding to im-
penetrable walls conditions.
From Equation 5, it is evident that the energy spectrum

of prismatic (cylindrical) NS is a sum of the spectra corre-
sponding to the two-dimensional cross-section NS (a
square with side length a) and the one-dimensional wire
of length c. In a similar manner, the spectrum for cylinders
with other cross-section shapes can be constructed using
the solutions for two-dimensional triangular or hexagonal
structures analyzed previously [8,9]. Below, we present the
analysis of cylindrical NS.



Table 1 Argument values at nodes and extremes of
cylindrical Bessel function

|p| q|p|1 t|p|1 q|p|2 t|p|2 q|p|3 t|p|3 q|p|4 t|p|4

0 2.4 0 5,5 3.713 8.5 7.10 11.6 10.15

1 0 1.625 3.7 5.375 6.9 8.55 10.25 11.6

2 0 2.92 5.11 6.775 8.4 10.0 11.65 13.15

3 0 4.325 6.4 8.1 9.85 11.4 13.2 14.2
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Let us consider a nanostructure with a circular cross
section of diameter a and cylinder height c. The solution
of the problem using a traditional approach can be
found in [12,13]. In our case, we make variable separ-
ation in cylindrical coordinates:

Ψ r;φ; zð Þ ¼ AF rð Þexp ipφð Þ Bexp ikzð Þ þ Cexp �ikzð Þ½ �;
with integer p ¼ 0;� 1;� 2

ð7Þ

We note that the value of p defines the angular mo-
mentum: L= pħ. In the case of EMBC, one can apply
mirror reflection from the base, which gives B=C,
resulting in the following wave function:

Ψ r;φ; zð Þ ¼ AF rð Þexp ipφð Þcoskz ð7AÞ
Strong confinement (OMBC) gives B=−C, which

introduces sinkz instead of coskz in Equation 7A.
The radial function F(r) is the solution of the following

radial equation:

d2F rð Þ
dr2

þ 1
r
dR
dr

þ k2 � p2

r2

� �
F rð Þ ¼ 0 ð8Þ

It is Bessel's differential equation regarding the vari-
ables kr, the solution of which is given by the cylindrical
Bessel function of integer order |p|: J|p|(kr); with, k= ħ−1

(2mEn)
1/2. Here, m is the effective mass of the particle,

and En is the quantized kinetic energy corresponding to
the motion in two-dimensional circular quantum well.
The total energy consists of energy contribution for the
motion within cross-section plane and along the vertical
axis z: E= En+ Ez.
The energy En depends on the values of k and is

obtained using boundary conditions. In the traditional
case of impenetrable walls, the Ψ function vanishes at
the boundary so that the energy values are determined
by the roots (nodes) of the cylindrical Bessel function
(see Figure 1 for different order numbers n, and also
Table 1). The same situation will take place for OMBC,
yielding zero wave function at the boundary so that the
Figure 1 Cylindrical Bessel functions Jn(x). Curve numbers
correspond to order n.
nodes q|p|i of the Bessel function will define the energy
values.
If the EMBC are used, the situation becomes different

since the function values in the points approaching the
boundary of the nanostructure should match those in
the image points, making the boundary to correspond to
the extremes of the Bessel function (which was strictly
proved for the spherical quantum dots (QDs) [10]).
Table 1 gives several values of the Bessel function ar-

gument kr corresponding to the function nodes (q|p|i)
and extremes (t|p|i) calculated for function orders 0, 1, 2,
and 3.
At the boundary, r= a/2; therefore, the corresponding

value of k is 2q|p|i/a for OMBC and 2 t|p|i/a for EMBC.
The energy spectrum for a particle confined in a
circular-shaped quantum well is as follows:

En ¼ 2ħ2

ma2
S2pj ji ¼

ħ2

2π2ma2
S2pj ji ð9Þ

Here, the parameter s|p|i takes the values of q|p|i for
OMBC (strong confinement) and t|p|i for EMBC (weak
confinement).
The quantization along the z axis for both the boundary

condition types will be Ez ¼ h2
8m

n2z
c2 , yielding the total energy

E ¼ h2

2m

S2pj ji
π2a2

þ n2

4c2

 !
ð10Þ

In the case of EMBC, the ground state (GS) energy
will be obtained with t11 = 1.625:

EGS ¼ h2=2m
� �

0:268=a2 þ 1=4c2
� � ð11Þ

In the OMBC case, the GS will be determined by the
smallest q value of 2.4:

EGS ¼ h2=2m
� �

0:584=a2 þ 1=4c2
� � ð11AÞ

Equations 10, 11, and 11A can be used for the analysis
of optical processes in the NS discussed. In particular,
blueshift in exciton ground state can be found from Equa-
tions 11 and 11A if one substitutes a reduced exciton mass
in place of particle mass m. Using Equation 10, it is pos-
sible to obtain in a similar way the energies corresponding
to the higher excited states.
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For long NS with sufficiently large c, the second term in
energy does not affect the GS. Thus, the solution for cylin-
drical NS based on even mirror boundary conditions
EMBC (weak confinement) gives the GS shift due to
quantum confinement that is (2.4/1.625)2 = 2.18 times
smaller than the value obtained for the strong confinement
case. In the case of spherical QD [10], the difference was
four times. It is reasonable that for strong confinement, the
blue shift value exceeds that obtained for the weak confine-
ment case. To illustrate this, we present in Figure 2 the
comparison of ground state energy obtained with OMBC
and EMBC (using Equations 11 and 11A) on NS diameter
for a cylindrical quantum well with parameters of silicon
(effective mass for electron 0.26 and 0.49 for a hole, which
corresponds to reduced exciton mass of 0.17; bandgap is
1.1 eV for 300 K). As one can see from the figure, the dif-
ference of the exciton bandgap scales down with increase
of the NS diameter, with invariably higher values observ-
able for the strong confinement case described by OMBC.
The choice of OMBC or EMBC has to be made taking

into account the probability of electron tunneling through
the walls forming the nanostructure. One can expect that
in the case of isolated NS strong confinement (OMBC),
approximation will be more appropriate, whereas for NS
surrounded by other solid or liquid media (core-shell QDs
[10] and pores in semiconductor media), weak confine-
ment with EMBC should be used.

Results and discussion
Considerable scientific interest has been attracted to semi-
conductor nanorods (nanowires) and cylindrical pores.
Let us mention here publications dealing with arrays of
Figure 2 Dependence of ground state energy on diameter of a
cylindrical nanostructure. The plot shows the data obtained with
odd and even mirror boundary conditions for an NS with parameters
of silicon.
cylindrical pores in sapphire [14], ZnO nanorods grown
within these pores [15], as well as CuS and In2O3 nano-
wires. Usually, the experiments report on relatively large
structures measuring 30 nm or more in diameter. As one
can see from Equations 11 and 11A, in these cases, the
expected blueshift will be about 0.01 eV or less for both
the weak and strong confinements. Nevertheless, there
exists literature data referring to nanorods of sufficiently
small diameter for a pronounced confinement effect.
A paper [16] reports on CdS nanorods with a diameter

of 5 nm and a length of 40 nm embedded into a liquid
crystal. The authors study the optical anisotropy caused
by the alignment of the nanorods. To determine it, they
measure polarization of photoluminescence due to elec-
tron–hole recombination, reporting that the spectral
maximum of luminescence is located at 485 nm
(2.56 eV), which exceeds the bandgap of the bulk CdS
by 0.14 eV. Taking the electron effective mass in CdS
[17] as 0.16m0 and hole effective mass 0.53m0, one can
find the reduced mass μ= 0.134m0 and the blueshift
0.12 eV using Equation 11, which agrees reasonably with
the experiment. As CdS nanostructure is surrounded by
liquid crystal media, we were using the EMBC or weak
confinement approximation.
Another study [18] is focused on the optical properties

of CuS nanorods measuring 6 to 8 nm in diameter and
40 to 60 nm in length; the authors report definite blue-
shift of fundamental absorption edge. Alas, we found no
data on the effective masses for CuS, so it was not pos-
sible to make numerical comparison with the theory.
A particular example of cylindrical QDs is presented

by quasi-circular organic molecules like coronene
C24H12 (see Figure 3). In this case c<< a, which makes
the second term in Equations 10, 11, and 11A very large
even for nz = 1, meaning that it has no contribution to
the optical properties of the molecule in visible light be-
cause the transitions between the states with different nz
will correspond to radiation in deep ultraviolet. There-
fore, the spectrum is defined by the first term in Equa-
tions 10 and 11 that essentially replicates the solution
obtained for the case of a long cylinder.
Figure 3 Coronene molecule (a) formula and (b) computer-
rendered three-dimensional image.
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Another paper [19] presents the experimental data
concerning the optical properties of coronene molecules
in tetrahydrofuran (THF) solution. Since the molecules
are submerged into media, we expect that weak confine-
ment/EMBC will be most appropriate for solution of the
problem. Strong absorption lines were registered at pho-
ton energies of 4.1 to 4.3 eV, with weaker absorption
down to 3.5 eV. To use our methodology, one should
first determine the diameter a of a circle embracing the
molecule with its 12 atoms of carbon (Figure 3).
The C-C bond length in coronene is d=1.4 Å, which

corresponds to the side of a hexagon. Thus, one would
have a = d

ffiffiffiffiffi
28

p
= 0.741 nm. Taking in (Equation 11) m as

free electron mass and using only the first term, we obtain
the ground state energy EGS= 0.73 eV. The higher energy
states (Equation 10) will be defined by the values of s|p|i = t|
p|i equal to 2.92, 3.713, 4.30 etc. The corresponding ener-
gies are 2.353, 3.805, and 5.1 eV that result in transition en-
ergies 1.62, 3.1, and 4.37 eV. The first value is out of the
spectral range investigated in [19]; the other two could rea-
sonably fit the absorption observed.
If we attempt to treat the case on the basis of strong con-

finement approximation (OMBC), one should use the q|p|i
values in the formulas (Equations 10 and 11A), yielding the
ground state of 1.591 eV and excited states at 3.78, 7.21,
and 8.35 eV. Therefore, the transition energies would be
2.19, 5.62, and 6.76 eV which have nothing in common with
the experimental values, proving that the previous conclu-
sion to use EMBC based on the fact that coronene mole-
cules are embedded into THF medium was the right one.
Yet, another paper [20] is devoted to studying coronene-

like nitride molecules with the composition N12X12H12,
where X can be B, Al, Ga or In. Depending on X, the bond
length will vary, giving different values of well diameter a.
The authors of [20] give the transition energies between
the ground state and the first excited state, corresponding
to HOMO-LUMO transition EHL. For these isolated mole-
cules, the strong confinement case/OMBC is expected to
be appropriate. The bond lengths and EHL values reported
in [20] are listed in Table 2 together with values of a calcu-
lated from bond length and the transition energies ΔE
found using the expression (Equation 10) with correspond-
ing q values. One can see that ΔE values are reasonably
close to the experimental EHL. Solution of the same
Table 2 The lowest transition energies in coronene-like
molecules

Material d (Å) a (nm) ΔE (eV) EHL (eV) [17]

BN 1.44 0.762 6.351 5.18

AlN 1.79 0.95 4.11 4.59

GaN 1.84 0.974 3.88 3.94

InN 2.06 1.09 3.1 2.33
problem using weak confinement/EMBC results in large
discrepancies that fails to explain the experimental data,
confirming the correctness of the decision to choose
OMBC for isolated molecules.

Conclusions
Theoretical description of prismatic and cylindrical nanos-
tructures (including pores in semiconductor) is made using
two types of mirror boundary conditions for solution of
the Schrödinger equation, resulting in simple analytical
procedure to obtain wave functions that offer reasonably
good description of optical properties of nanostructures of
various shapes. The expressions for energy spectra are
defined by the geometry and dimensions of the nanostruc-
tures. The even mirror boundary conditions correspond to
weak confinement that is applicable for the cases when the
nanostructure is embedded into another media (which is
especially true for a case of a pore) that enables tunneling
through the boundary of the nanostructure. In contrast,
odd mirror boundary conditions are more appropriate in
the treatment of isolated nanostructures where strong con-
finement exists. Both cases are illustrated with experimen-
tal data, proving good applicability of the corresponding
type of boundary conditions.
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