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Abstract

The application of one-dimensional (1D) V2O5�nH2O nanostructures as pH sensing material was evaluated. 1D
V2O5�nH2O nanostructures were obtained by a hydrothermal method with systematic control of morphology
forming different nanostructures: nanoribbons, nanowires and nanorods. Deposited onto Au-covered substrates, 1D
V2O5�nH2O nanostructures were employed as gate material in pH sensors based on separative extended gate FET as
an alternative to provide FET isolation from the chemical environment. 1D V2O5�nH2O nanostructures showed pH
sensitivity around the expected theoretical value. Due to high pH sensing properties, flexibility and low cost, further
applications of 1D V2O5�nH2O nanostructures comprise enzyme FET-based biosensors using immobilized enzymes.
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Background
Proton donor-acceptor property (amphoterism) is charac-
teristic of several metal oxides or nitrides. These proper-
ties have enabled the development of numerous devices to
measure ion activities in chemical environments, including
ion-sensitive field-effect transistors (ISFET) [1], capacitive
electrolyte-insulator-semiconductors [2], light-addressable
potentiometric sensors [3], and separative extended gate
field-effect transistors (SEGFET) [4]. All these devices are
based on field effect and the surface potential of gate insu-
lator material that changes according to the ion concen-
tration in the solution, controlling the output signal.
ISFET is the most common type of field-effect device used
in pH sensors and biosensors because it can be miniatur-
ized and manufactured on a large scale. However, in
ISFET sensors, the FET is in direct contact with the solu-
tion, which can hinder the measurement and
immobilization of biomolecules due to their small dimen-
sions. As an alternative, a SEGFET [4] or, in a simple way,
a sensitive layer connected to the input pin of a high-
impedance buffer, such as an operational amplifier [5,6],
can be utilized. In both cases, the transduction principle
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(field effect) is the same. Besides the reuse of the FET in
new measurements, the robustness and flexibility of the
extended sensitive layer facilitate the processing of new
materials to be implemented as ion sensors.
Since the technology of field-effect devices is mature,

research has focused on the synthesis of new materials to
be applied as ion sensitive membranes. Several metal oxi-
des or nitrides that have been used as pH sensitive mem-
branes have presented the expected response [7-10]. In
fact, nanoscale metal oxides can improve the fundamen-
tal properties of materials and the performance of devices
due to new physical and chemical properties. Recently,
one-dimensional (1D) nanostructured materials such as
nanowires, nanoribbons and nanotubes have attracted
much interest due to their improved properties when
compared to similar isotropic nanostructures [11-13].
Vanadium pentoxide (V2O5), which possesses particu-

larly interesting physical and chemical properties, has
been employed in technological applications as catalytic
material [14], in electrochromic devices [15], as battery
cathode material [16], and in sensors [17-19]. Several
strategies have been developed to obtain 1D V2O5 nanos-
tructures. For example, Avansi et al. recently reported an
environmentally correct, one-step hydrothermal route
for the synthesis of V2O5�nH2O nanostructures with con-
trolled morphology and crystalline structure [20].
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Figure 2 XRD diffractograms of the samples synthesized by the
hydrothermal route. (a) Nanoribbon at 160°C, (b) nanowire at
180°C and (c) nanorod at 200°C.
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Combining SEGFET devices and V2O5�nH2O nanos-
tructures, field-effect sensors can be constructed in a
simple and low-cost way. In this context of technological
applications, we report on the use of 1D V2O5�nH2O
nanostructures obtained by a hydrothermal method as
pH sensitive membranes in a SEGFET device, which was
constructed based on van der Spiegel’s concept [5].

Methods
The V2O5�nH2O nanostructures were synthesized by a
hydrothermal method which is described in detail else-
where [20]. Briefly, this procedure involves dissolving
V2O5 micrometric powder (Alfa Aesar, Ward Hill, MA,
USA; 99.995% purity) in deionized water, adding hydrogen
peroxide (H2O2), and treating the mixture hydrothermally.
Different V2O5�nH2O 1D nanostructures were obtained
by applying the hydrothermal treatment at different tem-
peratures in the same time of synthesis (24 h) [20].
The crystalline phase of the as-obtained samples was

investigated by X-ray diffraction (XRD) using a Shi-
madzu XRD 6000 diffractometer (Shimadzu Corpor-
ation, Nakagyo-ku, Kyoto, Japan) with Cu kα (λ= 1.5406)
radiation. The size and morphology of the as-obtained
samples were determined using a Zeiss VP Supra 35 field
emission scanning transmission electron microscope
(FE-STEM; Carl Zeiss AG, Oberkochen, Germany).
The as-obtained samples were deposited onto Au-

coated substrates by spin coating and connected to the in-
put pin of a LF356 JFET operational amplifier, used here
as a unity gain buffer. A silver/silver chloride (Ag/AgCl)
reference electrode was used to keep the voltage constant.
Figure 1 shows a schematic diagram of the SEGFET.

Results and discussion
The diffractograms in Figure 2 confirm the expected
crystalline phase in all the samples under study, i.e.,
Figure 1 Schematic diagram of the SEGFET configuration. The electron
monoclinic phase in the samples synthesized at 160°C
and orthorhombic phase in those synthesized at 180°C
and 200°C [20].
The bright field scanning transmission electron mi-

croscopy (STEM) images shown in Figure 3 confirm
the morphology of the resulting nanostructures. As
expected, different nanostructures were obtained. The
samples synthesized at 160°C show a nanoribbon-like
morphology (Figure 3a), while samples synthesized at
180°C and 200°C present, respectively, nanowire-like
(Figure 3b) and nanorod-like (Figure 3c) morphologies
[20].
SEGFET devices have been used as an alternative to

conventional ISFET to isolate FET from analytical chem-
ical environments and have presented the same oper-
ational characteristics [4,6,9,18]. The robustness and
flexibility of the gate in SEGFET devices allow for the
ic diagram of LF356 operational amplifier is shown.
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Figure 3 FE-STEM images of a 1D V2O5.nH2O nanostructures synthesized. (a) 160°C, (b) 180°C and (c) 200°C.
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combination and testing of new materials that can sense
pH easily. In addition, the commercial high-input im-
pedance device (FET part) in SEGFET sensors can be
reused, since only the extended gate membrane has to
be built [4,6,9,18].
The 1D V2O5�nH2O nanostructures deposited on

Au-coated substrates were immersed in buffer solu-
tions with different pH (pH from 2 to 12), and the
output voltage of the operational amplifier was
recorded over time. Figure 4a shows the dynamic re-
sponse of all 1D V2O5�nH2O nanostructures to pH
variations. Despite the structural changes due to the
conditions of hydrothermal synthesis, the V2O5�nH2O
synthesized at 160°C (in nanoribbon form with mono-
clinic phase) and at 180°C (in nanowire form with
orthorhombic phase) yielded similar results. The pH
sensitivity of the 1D V2O5�nH2O nanostructures was
determined based on the output voltage at 3 min.
Within the limits of experimental error, the sensitivity
did not change in any of the V2O5�nH2O morpholo-
gies, indicating that the pH sensitivity is independent
of the phase or nanostructure, as indicated in the inset
in Figure 4b.
The mechanism of pH sensitivity is due to the ampho-

teric properties of the majority of metal oxides and can
be explained by the well-known site-binding model
[21,22]. According to this model, the surface of
V2O5�nH2O nanostructures contains three sites, i.e.,
negatively charged groups, neutral groups and positively
charged groups. The total surface charge can be altered
by the formation of metal complexes on the surface of
V2O5�nH2O nanostructures according to the following
equation [21,22]:

ψ ¼ 2; 3kT
q

β

βþ 1
pHpzc � pH

� �

where pHpzc is the pH value at the point of zero charge,
q is the elementary charge, k is the Boltzmann constant,
T is the absolute temperature, and β is a factor that
reflects the chemical sensitivity of the gate material.
Modifications in the pH of the electrolyte cause changes
in the concentration of protons, allowing for control of
the output signal of SEGFET devices. The site-binding
model is consistent with the experimental results, indi-
cating that the value of β is the same for any V2O5�nH2O
morphologies.
The pH sensitivity of 1D V2O5�nH2O nanostructures

is consistent with the theoretical Nernstian value
expected for pH-sensitive materials (59.2 mV.pH^−1) and
in excellent agreement with values reported for other
metal oxide pH-sensing membranes [6-10]. In addition,
due to this property, 1D V2O5�nH2O nanostructures can
be applied as field-effect based biosensors, since the
biomolecule-catalyzed reaction changes the ion concen-
tration in solution, as suggested in the literature [23].

Conclusions
In summary, we have reported the results of an investiga-
tion of vanadium pentoxide nanostructures as sensitive



0 3 6 9 12 15 18 21
-100

0

100

200

300

400

500

600

200 °C - nanorods

Time / min

pH 12

pH 10

pH 8

pH 7

pH 6

pH 4

 V
ol

ta
ge

 / 
m

V

pH 2

0 3 6 9 12 15 18 21
-100

0

100

200

300

400

500

600 180 °C - nanowires

V
ol

ta
ge

 / 
m

V

Time / min

pH 2

pH 4

pH 6

pH 7
pH 8

pH 10

pH 12

0 3 6 9 12 15 18 21
-100

0

100

200

300

400

500

600

160 °C - nanoribbons
V

ol
ta

ge
 / 

m
V

Time / min

pH 2

pH 4

pH 6

pH 7

pH 8

pH 10

pH 12

a

2 4 6 8 10 12
-100

0

100

200

300

400

500

600

160 180 200

52

56

60

V
ol

ta
ge

 / 
m

V

pH value

b

S
en

si
tiv

ity
 / 

m
V

.p
H

-1

Temperature / oC

Figure 4 Dynamic response of all 1D V2O5�nH2O nanostructures to pH variations. (a) Typical dynamic response of 1D V2O5�nH2O
nanostructured sensing membranes to variations in pH and (b) pH sensitivity calculated at 3 min. Inset: pH sensitivity of 1D V2O5�nH2O
nanostructures as a function of hydrothermal synthesis temperature.
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material in SEGFET pH sensors. The use of the hydro-
thermal route combined with FET-based sensors yielded
nanometric pH-sensitive materials. 1D V2O5�nH2O
nanostructures showed pH sensitivity close to the theor-
etical value. Despite the influence of the synthesis
temperature on the morphological and structural proper-
ties of the material, its pH sensitivity remained un-
affected, as expected. Our strategy shows potential
advantages for the construction of low-cost pH sensing
membranes with promising applications in field effect-
based biosensors.
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