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Here we present a facile technique for the large-scale production of few-layer graphene flakes. The as-sonicated,
supernatant, and sediment of the graphene product were respectively sprayed onto different types of silicon
wafers. It was found that all devices exhibited current rectification properties, and the supernatant graphene
devices have the best performance. Schottky junctions formed between graphene flakes and silicon n-type
substrates exhibit good photovoltaic conversion efficiency while graphene/p-Si devices have poor light harvesting

Background
Since the first demonstration of graphene nanosheets in
2004, it has been considered as a chemically stable and
mechanically strong new material [1]. Tremendous work
has been devoted to this material because it has exhib-
ited outstanding properties particularly in the optoelec-
tronic field [2]. The two dimensional honeycomb lattice
of the graphene leads to a hybridization of sp® which, in
turn, leads to extraordinary electrical properties with
ultrahigh carrier mobility (approximately 100,000 cm?/
Vs) [3]. A monolayer of graphene has a thickness of
0.34 nm and absorbs 2.3 % of white light [4]; even gra-
phene layers of 1,000 nm thick still have a transparency
of approximately 70 % [5], which makes it possible to
use graphene as transparent electrodes [6]. Graphene
has the advantages over carbon nanotubes of being nat-
urally compatible with thin film processing, enabling
large device areas and hence, high operating powers.
Also, graphene is more readily scalable and has a lower
contact resistance. The combination of these enticing
electrical and optical properties of the graphene moti-
vated the researchers to experience it in the field of
optoelectronic devices [7].

Previous use of graphene in organic solar cell applica-
tions was mainly confined as flexible transparent electrodes
to replace transparent indium tin oxide or fluorine-
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doped tin oxide for collecting charge carriers [8]. Re-
cently, graphene-on-silicon configurations were made
into solar cells by using membrane transfer technique
[9]. However, the fabrication process based on membrane
transfer is expensive and difficult to scale up. The previ-
ous studies have explored electron transport in graphene;
the Schottky barriers between graphene and silicon have
not been studied thoroughly. The Schottky barriers have
been observed at bulk, highly ordered pyrolytic graphite/
silicon interfaces [10], but no photocurrents could be
measured; a comparison of n- and p-type substrates was
not given in this prior work. Moreover, the local effect of
light absorption on the J-V characteristics of graphene/
silicon interfaces has not been studied.

In this work we present a facile technique for the large-
scale production of few-layer graphene flakes. Next, as-
sonicated (So), supernatant (Su) and sediment (Se) of the
graphene product were respectively sprayed onto n-/p-
type silicon wafers. The current rectification properties of
the formed Schottky junctions between different gra-
phene sources and silicon substrates were compared.

Methods

The graphene flakes were synthesized through chemical
vapor deposition of acetylene on a MgO-supported Fe-Co
bimetallic catalyst (Fe-Co/MgO with a stoichiometric com-
position of 2.5:2.5:95 wt%) [11]. The catalyst was prepared
by using the impregnation technique. Initially, the weighted
amounts of Fe(NO3)3:9H,O and Co(NOs),-6H,O were
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dissolved in ethanol under agitation. Subsequently, the
MgO powder with a surface area of 130 m?*/g was mixed
the solution and followed by drying at 60°C overnight. The
catalyst was obtained by calcinating the resulting mixture
in air at 500°C for 2 h. Graphene sheets can grow on the
catalyst system from pyrolysis of acetylene at 1,000°C with
the argon flow as carrier gas. The mixture product can be
collected after 30 min of reaction and cooled under argon
flow for about 10 min. Impurities like catalystsupport
MgO and Fe-Co metal particles can be removed by wash-
ing the mixture product with hydrochloric acid under son-
ication. The purified graphene sheets can be obtained after
filtration and washing.

Purified graphene flakes were first dispersed in pure
N-methyl-2-pyrrolidone (NMP, 0.1 mg/mL) under sonic-
ation(So, G-NMP). The G-NMP solution can be directly
utilized to make G/n-Si devices. Part of the G-NMP so-
lution was centrifuged; the supernatant (Su) and the
sediment (Se) were taken out respectively and used for
the fabrication of G/n-Si devices. The three different
solutions were sprayed respectively on n-type silicon
wafer  (resistivity,0.295 Ohm-cm and mobility,
1,026 cm?/Vs), p-type silicon substrate (resistivity, 21
Ohm-cm and mobility, 1,502 ¢cm?/Vs) and glass sub-
strates (for reference) by airbrushing. A silicon wafer
with a window of pre-deposited insulating layer and a
glass substrate were placed on a heating platform side by
side (so that the resulting graphene flake films on Si and
glass substrates should have the same thickness) and
heated up to 150°C in order to evaporate the NMP solv-
ent from the coatings. The schematic diagram of
graphene-on-silicon Schottky device was displayed in
Figure 1.

To characterize the morphological properties of gra-
phene nanosheets, several techniques such as micros-
copy and X-ray diffraction (XRD) were utilized. Atomic
force microscopy (AFM) images were obtained on Veeco
Dimension 3100 AFM system (Veeco Instruments, Inc.,
NY, USA). Scanning electron microscopy (SEM) images
were obtained using a JEOL 7000 F high-resolution
scanning electron microscope (JEOL Ltd., Tokyo, Japan).
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This microscope has a resolution of 1.2 nm at an accel-
erating voltage of 15 kV and a working distance of
10 mm. The final products were mounted on aluminum
pins with double-sided carbon tape and their corre-
sponding SEM images were obtained. Elemental analysis
was performed with Genesis energy dispersive spectrom-
eter system (EDAX Inc.,, Mahwah, NJ, USA). The X-ray
powder diffraction profiles of graphene sheets were
recorded in 0-20 mode on Bruker D8 Discovery diffrac-
tion system (Bruker AXS Corporation, Madison, WI,
USA). The monochromatic Cu Ka radiation line and
general area detector diffraction system were used as an
excitation source and detector, respectively. The experi-
ments were carried out in Bragg-Brentano geometry.

To understand how a different graphene source affect
the G/n-Si Schottky junction properties, current density-
voltage (J-V) characteristics were investigated in the dark
and under illumination using a solar simulator at air
mass coefficient 1.5 (approximately 100 mW/cm?) inside
a glove box in a nitrogen environment. The illumination
was on the graphene flake side. The devices were irra-
diated in an area of 1x1 cm? and data were recorded
using a Keithley 2400 source meter (Keithley Instru-
ments Inc., Cleveland, OH, USA).

Results and discussions

As shown Figure 2a, the thermal gravimetric analysis
(TGA) results show the purity of graphene flake as-
purified sample is better than 99 wt%. The combustion
temperature is around 620°C. Raman spectroscopy is a
nondestructive optical technique, has been successfully
used to characterize graphene and other carbon-based
materials [12,13]. Furthermore, it was shown that the
Raman spectrum of graphene provides useful informa-
tion about its crystallinity and the number of layers
present within the sample [4]. The typical Raman spec-
tra (Figure 2b) of the few-layer graphene has three main
peaks which are commonly referred to as the D band (ap-
proximately 1,350 cm™'), G band (approximately
1,580 cm™) and the 2D band (approximately 2,650 cm™).
The D band arises due to the breathing modes of sp*

Figure 1 Schematic diagram of a graphene-on-silicon device. Characterization techniques.
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Figure 2 TGA result, Raman spectra, and XRD pattern of the graphene flakes. The TGA result (a), Raman spectra (b) and XRD pattern (c) of
the graphene flakes obtained from the supernatant, sonication, and sediment.
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atoms in rings and its intensity is usually associated with
defects in the carbon-based material [14], in the case of
graphene, a substantial contribution which typically
comes from the edge effects [15]. The G band is often re-
ferred to the E,; mode at the Brillouin zone center due
to the bond stretching of sp> atoms in both ring and
chains [16]. The 2D band is the second order mode and
its shape as well as its position is used to identify a single
layer from bilayer and few (less than five) layer graphene
[4]. Figure 2b shows the Raman spectrum of our gra-
phene flakes measured at 633 nm excitation.

The crystallinity and number of layers in the graphene
nanosheets can be analyzed by XRD technique. The
XRD profile of the graphene sheets grown by radio fre-
quency catalytic chemical vapor deposition method was
shown in Figure 2c. The typical features for graphite at
25.3° (002) and 49.1° (004) are identified in this graphene
XRD pattern [17]. The 44.7° (100) and 74.7° (110) dif-
fraction peaks originate from the two-dimensional in-
plane symmetry along the graphene sheets [18]. The
layer-to-layer distance (d-spacing) between two subse-
quent graphene sheets can be calculated from the (002)
diffraction peak position [17]. The width of the diffrac-
tion peak can be used to evaluate the crystallite size by
using the Scherrer equation (thickness =0.9 A/(B cos 6),

where A is the x-ray wavelength, B is the full width at
half maximum of the diffraction peak, and 0 is the Bragg
angle) [19]. Based on the values of the d-spacing and the
size of crystallite, the graphene sheets in this work were
estimated to have in average of about four layers.

The top view morphologies of a typical G/Si device
made of supernatant were displayed in SEM and AFM
images (Figure 3). Both SEM and AFM characterization
on the graphene coating reveals that graphene flakes are
overlapped and interconnected, which ensures a con-
ducting pathway even if there are cracks formed in one
of the layers.

The typical dark current—voltage characteristic of G/n-
Si heterojunction device is displayed in the top inset of
Figure 4. The G/n-Si heterojunctions are highly rectifying
with an ‘on/off’ current ratio of 10 to approximately 10* at
+1 V. As seen from Figure 5b, the G/n-Si with a graphene
source from supernatant have highest on/off ratio, and
those made of sediment have the lowest on/off ratio,
which might be caused by impurities in the sediment.
Similarly, the supernatant devices also have the highest
rectification factors, while the junctions between sediment
graphene and silicon exhibit lowest rectification factors, as
seen in Figure 4. The ideality factor is derived from the
slope of the dark J-V curve. The Shockley ideal diode

Figure 3 SEM and AFM images of typical graphene-on-silicon devices. SEM top view (a) and cross section view (b) images of the typical
graphene-on-silicon devices. The inset in (a) displays the AFM image of the graphene flakes obtained from the supernatant.
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Figure 4 J-V characteristic curves of G/n-Si devices, rectification and ideality factors. (a) The J-V characteristic curves of G/n-Si devices were
collected in dark. (b) The rectification factors (left y-axis) and the ideality factors (right y-axis) of G/n-Si devices with different graphene source and
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Figure 5 J-V characteristic curves of G/n-Si and G/p-Si devices
with different graphene sources in the dark.

equation gives the J-V characteristic of an ideal diode in ei-
ther forward or reverse bias (or no bias). The equation is
as follows:

J =Js(e"mr — 1) (1)

where J is the diode current, Js is the reverse bias saturation
current (or scale current), Vp is the voltage across the
diode, V7 is the thermal voltage (kgT, kg is the Boltzmann
constant, 7' the temperature in Kelvin), and # is the ideality
factor, also known as the quality factor, or sometimes emis-
sion coefficient. The ideality factor # varies from 1 to 2 de-
pending on the fabrication process and the semiconductor
material and, in many cases, is assumed to be approxi-
mately equal to 1. As shown in Figure 3, the ideality factor
of the G/n-Si devices change in the order n(Su) > n(So) > n
(Se) . The saturation current density /s can be expressed
with thermionic emission model [20] in the form of current
density (mA/cm?)

Js = AT?e Pss/ksT (2)

where A is the Richardson constant, which is 112 A/
(cm*K?)for n-Si and 32 A/(cm?K?) for p-Si substrates [21],
and egsp is the zero-bias Schottky barrier height. By com-
bining equations 1 and 2 and fitting the /-V curves of the
devices in dark, the Schottky barriers are estimated to be
0.52 to 0.67 eV on average for the graphene/n-Si devices
and 0.61 to 0.73 eV for the graphene/p-Si devices at
300 K, which is consistent with the higher current dens-
ities observed in n-Si devices versus p-Si devices. These
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Figure 6 J-V characteristic curves of the G/n-Si (left) and G/p-Si
(right) devices with different grapheme sources under AM1.5
illumination.
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values are comparable to the values of the bilayer
graphene-on-silicon devices [22], but considerably smaller
than the Schottky barrier heights (approximately 0.7 eV)
measured previously in graphene/graphene oxide inter-
faces [23], and the value obtained from the temperature-
dependent data (approximately 0.85 eV) [24].

Usually graphene flakes, generally known to exhibit
weak p-type conductivity [25], and different Schottky
junction solar cells composed of the graphene and n-/p-
type Si substrates were evaluated (Figures 5a,b). By
virtue of the formation of Schottky barrier, excellent

Page 5 of 6

rectification characteristics are observed (Figure 5a).
Moreover, these devices exhibit pronounced photovol-
taic effects upon white light illumination. As shown in
Figure 5b, the device made of p-Si wafer shows the worst
performance, with a power conversion efficiency of less
than 0.005 %. In contrast, substantial increase of to
0.02 % is observed when graphene flakes are deposited
onto n-type silicon wafers. Further increase in the con-
version efficiency was observed for devices made of Se
and Su graphene flakes. It might be due to the fact that
Su graphene has much less impurities which could cause
exciton quenching.

To investigate the underlying physics of the G/Si
Schottky junction solar cells, photoresponse characteris-
tics of both G/n-Si and G/p-Si devices were shown in
Figure 6a,b. The observed high sensitivity to the light il-
lumination, with a large i,,/iog ratio of >102, suggests
that the electron—hole pairs could be efficiently gener-
ated and separated in the G/Si solar cells, which helps
facilitate the Schottky junctions to harvest solar light
more effectively. The schematic energy band diagrams of
G/n-Si and G/p-Si were displayed in Figure 7a,b. As a
result of the formation of Schottky barrier at the G/Si
interface, partial carriers in Si substrates tend to move to
the graphene side and consequently, the energy levels
near the Si surface will bend upward (for n-Si) or down-
ward (for p-Si), causing the formation of space-charge
region and built-in electric field near the G/Si interface.
Upon light illumination, the photogenerated electron—hole
pairs will be separated within the built-in field region, and
the resulted free electrons and holes will move towards op-
posite directions, which results in the generation of photo-
current. This model suggests that the graphene films serve
not only as transparent electrodes but also as important
active layers in the devices.

Although the photovoltaic conversion efficiency of the
G/Si solar cells is relatively low, the photovoltaic per-
formance could be improved by doping graphene with
nitrogen in G/p-Si configuration, which could be attribu-
ted to the enhanced n-type conductivity of the graphene

graphene n-Si
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Figure 7 Energy diagrams of G/n-Si and G/p-Si Schottky junctions upon light illumination. The energy diagrams of G/n-Si (a) and G/p-Si
(b) Schottky junctions upon light illumination, respectively. Og/®s; and Eqc/Ers; denote the work functions and Fermi energy levels of graphene/Si.
Xsi is the electron affinity of silicon. E- and Ey, are the conduction band and valence band of silicon, respectively.

graphene p-Si1
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film at higher N doping concentration, or treating gra-
phene with a strong acid such as SOCI, or nitric acid in
G/n-Si devices [26]. Additionally, increasing the gra-
phene flake size would be helpful for the improvement
of photovoltaic conversion of both devices.

Conclusion

We developed chemical vapor deposition approach to the
synthesis of graphene at large scale and low cost, which
makes the wide applications of graphene possible. The gra-
phene coating on n-Si wafer forms Schottky junction with
rectification behavior. The fabrication of Schottky junctions
has the merits of low cost and simplicity. By comparing dif-
ferent graphene sources, it was found that the supernatant
graphene is the most desirable material for the fabrication
of G/n-Si junction with excellent rectifying capability and
good photovoltaic conversion efficiency. Although G/p-Si
also exhibit rectification behavior, they demonstrate poor
photovoltaics conversion efficiency due to the weak p-type
conductivity of our graphene flakes.
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