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Abstract

Molecular quantum-dot cellular automata (mQCA) has received considerable attention in nanoscience. Unlike the
current-based molecular switches, where the digital data is represented by the on/off states of the switches, in
mQCA devices, binary information is encoded in charge configuration within molecular redox centers. The mQCA
paradigm allows high device density and ultra-low power consumption. Digital mQCA gates are the building blocks
of circuits in this paradigm. Design and analysis of these gates require quantum chemical calculations, which are
demanding in computer time and memory. Therefore, developing simple models to probe mQCA gates is of
paramount importance. We derive a semi-classical model to study the steady-state output polarization of mQCA
multidriver gates, directly from the two-state approximation in electron transfer theory. The accuracy and validity of
this model are analyzed using full quantum chemistry calculations. A complete set of logic gates, including
inverters and minority voters, are implemented to provide an appropriate test bench in the two-dot mQCA regime.
We also briefly discuss how the QCADesigner tool could find its application in simulation of mQCA devices.

Keywords: Electron transfer reactions, Molecular electronics, Molecular gates, Molecular quantum-dots, Quantum
cellular automata
Background
Recent advances in molecular electronics on one hand
and the limitations of conventional semiconductor
devices, on the other hand, have driven a surge of activ-
ities towards the realization of molecular devices, cir-
cuits, and systems. Achieving the ultimate diminution
in size, power consumption, and delay of electronic
devices and systems has always been a challenging en-
deavor of scientists and designers in this field. Due to
the prospect of size reduction in electronics offered by
molecular-level control of properties, molecular elec-
tronics provides means to extend the Moore's law be-
yond the foreseen limits of small-scale conventional
silicon integrated circuits. The small size of molecules
allows high device density in the range of 1011 to 1012

devices/cm2 [1]. Besides, the chemical self-assembly
capacity in manufacturing molecular devices provides
many advantages to conventional semiconductor manu-
facturing technology, including lower manufacturing
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cost and uniform device reproducibility. Molecular elec-
tronics endeavors to use the nonlinear current–voltage
characteristics of individual molecules or molecular as-
semblies as active devices (diodes, transistors, etc.) in
electronic circuits. However, the power consumption of
molecular current switches at very high frequencies is
still a drawback [2]. The π-σ-π mixed-valence type
molecules, which provide double-well potentials for
electrons, have been proposed and studied by Aviram
towards the synthesis of memory, logic, and amplifica-
tion [3]. Lent proposed using molecules in representing
binary information within the molecular quantum-dot
cellular automata (mQCA) paradigm [1,4]. Molecular
QCA provides an alternative approach to represent and
process data, where binary representation lies in the charge
configuration within molecules rather than in the on/
off states of current switches. A cell in the mQCA
model consists of a number of molecular quantum dots
(or redox centers) and a few electrons. The electrons
tend to occupy antipodal sites as a result of Coulomb
repulsion. The Columbic interactions cause electrons to
tunnel from one redox center to another in a cell, but
not between cells. Thus, it is likely that no current
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flows, since the neighboring cells are coupled by elec-
trostatic field. Figure 1 depicts two-dot and four-dot
mQCA cells and how binary “1” or “0” is represented.
The first QCA device was implemented and tested
using metal dots at near 0 K [5]. Semiconductor imple-
mentation of QCA using GaAs/AlGaAs heterostructure
materials has been reported in [6,7] as well. Molecules
are good containers for keeping electric charge and
mQCA cells have a more promising future to work at
room temperature [8]. Nonbonding π or d orbitals of a
single molecule (or multiple molecules) can function as
quantum dots, where the electric charge is localized in
each cell. Synthesis of two-dot and four-dot mixed-
valence candidate molecules for mQCA has been
reported in [9-14]. Many of these molecules are mixed-
valence type and include transition metals to enable fast
electron transfer reactions [15]. Molecular QCA gates
are the building blocks of circuits in this paradigm. Cal-
culation of the electronic structure of mQCA gates
composed of these molecules is challenging, since the
number of basis set functions grows exponentially as
the number of molecules and atoms are increased. Be-
sides, many of the ab initio methods fail in describing
charge distribution in mixed-valence complexes. There-
fore, developing semi-classical models to study mQCA
gates is of high importance. Currently QCADesigner
[16] utilizes nonlinear and two-state approximations to
solve metallic-based QCA circuits. Several QCA circuits
Figure 1 Binary representation in the mQCA paradigm. (a) Schematic
two-dot cells, depending on which of the upper (A) or lower (B) quantum
binary “1” and “0” is represented within the occupation of AB’ or A’B dots c
including combinational as well as sequential circuits
have been studied using QCADesigner. Examples are
adders, shift registers, RAM, digital data storage, and
simple microprocessors [17-26]. In this paper, we center
on two-dot mQCA and analyze the validity and accur-
acy of the two-state model approximation for studying
multidriver mQCA gates. This study provides an ap-
proach to enhance the QCADesigner tool for simula-
tion of mQCA devices in the future.

Methods
Two-dot molecular QCA test bench
The majority voter (MV) and the inverter (INV) gates
[25] are the fundamental building blocks of any circuit
in the four-dot QCA architecture. These gates have
been schematically shown in Figure 2a, b. Particularly,
the MV gate is referred to as the universal QCA gate,
since the AND and OR logical operations can be done
by this gate, as evident from the truth table shown in
Figure 2c.
Our multidriver minority voter (MinV) gate is com-

posed of m drivers, where m is an odd number, as inputs
and one output. Figure 3a schematically illustrates the
three-driver MinV model gate in the two-dot mQCA re-
gime. When only one driver (e.g., the d1) is present, the
model gate serves as an INV gate (Figure 3b). In the
multidriver MinV model gate, all the distances between
the centers of the molecules are l, which is equal to the
structure of a two-dot mQCA cell. (b) A two-dot molecule. (c) In
-dot is occupied, binary “1” or “0” is represented. (d) In four-dot cells,
orrespondingly.



Figure 2 Four-dot QCA gates. (a) The universal MV gate. The majority of the three fixed inputs, which is “0” in this figure, appears at the output
as a result of Coulombic interactions and minimum energetics. (b) The inverter gate. (c) Truth table of the MV gate. When d3 = ”0”, the MV gate
performs AND logical operations on d1 and d2, and when d3 = ”1” the MV gate functions as a two-input OR gate [25].
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distance between the middle of upper and lower π-
bonds as shown in Figure 3c. The inputs of the gates are
kept fixed, while the output cells switch to their stable
states. To this end, two point charges q and 1-q sepa-
rated by distance l are used to mimic each input as
depicted in Figure 3c.
The MinV gate is an alternative to the MV gate in

the four-dot QCA, where the output is inverted.
Compared to MV and INV gates in the four-dot
architecture, which require 16 and 28 quantum-dots
correspondingly, the MinV and INV gates require only
8 and 4 quantum-dots in the two-dot mQCA regime.
Consequently, these gates provide a small two-dot
mQCA test bench, which make high level quantum
chemical calculations feasible. The MinV gate can per-
form NAND and NOR logical operations, as shown
in Figure 3d, and provides a functionally complete
logic set to implement any logic function in the two-dot
mQCA framework. Additionally, it is possible to im-
plement multi-input (or multidriver) MinV gates, which
in turn decrease the total number of gates required
to implement a logic circuit. It is important to note
that since the MinV gate is not a planar gate, circuits
implemented in the two-dot mQCA regime are not
planar circuits. We highlight that the practical QCA
circuits require clocked-control cells and clocking
schemes [21,27-29], which are not addressed in this
paper.
Two-state model for molecular QCA gates
The charge configuration in a QCA cell is quantified by
the so called ‘polarization’, and is defined as [30]

P ¼ qA þ qB′ð Þ � qB þ qA′ð Þ
qA þ qB þ qA′ þ qB′

ð1Þ

where qA, qB, qA′ and qB′ are the charges localized at four
quantum dots labeled in Figure 1. For two-dot mQCA
cells, the polarization is given by the charges qA and qB at
the corresponding redox centers in Equation 1. The
polarization of a QCA cell varies between −1 and 1, while
negative and positive polarizations represent binary “0”
and “1”, respectively. In two-dot mQCA cells, the nor-
malized dipole moment of the used two-dot molecule is
also identical to the polarization, which is given by

P ¼ μα
l=2

ð2Þ

where μα denotes the component of the molecular dipole
moment that is parallel to the bridge direction, and the
origin is in the middle of the bridge. The dipole moment
of an mQCA cell can be obtained through full quantum
chemical calculations. An important parameter of a QCA
device is the Kink energy (Ek), which is the required en-
ergy to excite the system from the ground state to the
first excited state. To distinguish a bit value from the
thermal environment, Ek must be greater than kBT [31],



Figure 3 Two-dot QCA gates. (a) Structure of the three-input MinV gate. This gate is composed of three fixed inputs (d1, d2, and d3) and a
two-dot molecule (AB) as output. The minority of the three fixed inputs, which is “0” in this figure, appears at the output. (b) When there is only
one input, the MinV gate functions as an inverter gate. (c) Two point charges q and 1-q separated by distance l, which is the distance between
the middle of upper and lower π-bonds, are used to mimic a fixed input. (d) Truth table of the MinV gate. When d3 = ”0”, the MinV gate
performs NAND logical operation on d1 and d2, and when d3 = ”1” the MinV gate functions as a two-input NOR gate.

Rahimi and Nejad Nanoscale Research Letters 2012, 7:274 Page 4 of 12
http://www.nanoscalereslett.com/content/7/1/274
where T is the operation temperature in Kelvin, and kB is
the Boltzmann's constant. The Ek represents the energy
cost of cells i and j having opposite polarizations. That is,
the electrostatic interaction between all the charges in
cells i and j is calculated by [16]

Ei;j ¼
X
i;j

1
4πE0Er

qiqj
ri � rj
�� �� ð3Þ

where E0 is the permittivity of free space, and Er is the
relative permittivity of the material system. The Kink en-
ergy is then given by [16]

Ek ¼ E′
i;j � Ei;j ð4Þ

where E′i,j and Ei,j denote the electrostatic energy of cells
i and j having opposite and same polarizations
correspondingly.
Tougaw and Lent have used a simple Hamiltonian of

the extended-Hubbard type to describe the dynamic be-
havior of four-dot metallic-based QCA nanodevices [32].
Although this Hamiltonian describes the dynamics of
the coherent system composed of arrays of four-dot
QCA cells elegantly in theory, it is only possible to
model the small systems employing this scheme, since
the total required number of direct-product basis sets
grows exponentially with the number of cells. In other
words, an array with N number of four-dot cells and B
number of basis sets in each cell requires the total num-
ber of direct-product basis sets as [32]

nbasis ¼ BN ð5Þ
By reducing the number of basis sets for each cell and

picking up the two orthogonal ones, the Hamiltonian of
a four-dot QCA wire can be mapped to Ising model as
[32,33]

H ¼ �γ
XN

i¼1
σx ið Þ � Ek

2

XN�1

i¼1
σz ið Þσz iþ 1ð Þ ð6Þ

where Ek is the kink energy of four-dot cells, γ is the
tunneling energy, and σx and σz are Pauli spin matrices.
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In semiconductor and metal-dot QCA, the tunneling
barriers of the cells are connected to electrodes, and
their heights are controlled externally by voltage sources
[33]. The steady-state polarization of any cell, j in a
block of cells, can be obtained as a solution to the
Hartree-Fock intercellular approximation. This approxi-
mation decouples the line of N cells into N single cell
subsystems and assumes that the cells are only coupled
through expectation values of polarizations. The conse-
quent solution is [33],

Pj ¼
Ek

2γ
�Pjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Ek
2γ

�Pj

� �2
s ð7Þ

where P
—
j is the sum of the polarizations of the neighbor-

ing four-dot QCA cells. Equation 7 is currently used in
the nonlinear and two-state simulation engine of QCA-
Designer to solve the metallic-based QCA circuits. It is
important to note that mQCA utilizes non-abrupt clock-
ing to reduce the probability of Kink, the property that is
not currently present in the QCADesigner as it is based
on metallic QCA. In mQCA, the tunneling barriers can
be controlled by external electric field [27]. It is demand-
ing to enhance the tool to be able to simulate mQCA cir-
cuits. As a primary step towards this end, we present
how a similar equation to (7) can be derived directly
from the two-state approximation in electron transfer
theory [34,35] for two-dot mQCA. We then discuss how
these approximations affect the results compared to
those obtained from full quantum chemistry calculations.
Equation 8 describes the electron transfer (ET) process

in a two-dot mQCA cell, where the two redox centers, A
and B, are linked through an intervening bridge, I.

A� � I � B , A� I � B� ð8Þ

The electronic coupling between the redox centers,
which is time independent, is an important factor in
the ET process. Within the two-state approximation,
the Landau-Zener model [36,37] for avoided crossing
of energy surfaces may be applied, where the two dia-
batic states “1” and “0” denoted by ψa and ψb, and with
energies Haa and Hbb interact. The ground state ψ1 and
the first excited state of a QCA cell, ψ2, can be related
to the diabatic states ψa and ψb by a unitary transform-
ation [34]

ψ1 ¼ cosη ψa � sinη ψb ð9Þ
ψ2 ¼ sinη ψa þ cosη ψb ð10Þ

In Equations 9 and 10, ψ1 and ψ2 are orthonormal,
whereas ψa and ψb are not orthogonal in general. The
correspondence between diabatic and adiabatic two-state
models arises from the secular determinant (Sab =
<ψa|ψb> is neglected) [38]

Haa � E Hab

Hab Hbb � E

����
���� ¼ 0 ð11Þ

where E is the adiabatic energy eigenvalue. The η in
Equations 9 and 10 satisfies [38]

tan2η ¼ 2Hab= Haa � Hbbð Þ ð12Þ

The energy difference between the two diabatic states
in the output cell of the MinV gate can be approximated
by calculating the difference between the electrostatic
energies of the gate for the two output configurations,
where the unit charge is localized at sites A and B cor-
respondingly. Using Equation 3, for the “1” and “0” out-
put states (Figure 3a), we obtain

Haa � Hbb ¼ 1
4πE0

� q1 þ q2 þ q3ð Þe2
l

þ 3� q1 þ q2 þ q3ð Þð Þe2ffiffiffi
2

p
l

� �

� 1
4πE0

q1 þ q2 þ q3ð Þe2ffiffiffi
2

p
l

þ 3� q1 þ q2 þ q3ð Þð Þe2
l

� �
ð13Þ

Inserting Equation 13 into Equation 12 we have

cot2η ¼ 1
2Hab

� �
e2

4πE0l

� �
2� ffiffiffi

2
p

2

� �
� 2 q1 þ q2 þ q3ð Þ � 3½ � ð14Þ

The Kink energy of two-dot cells can be calculated
from Equation 3 and 4 for two neighboring cells as

Ek ¼ �e2

4πE0l
2� ffiffiffi

2
p

2

� �
ð15Þ

and for each driver, the polarization is defined using
Equation 1

Pdi ¼
qie� 1� qið Þe
qieþ 1� qið Þe ¼ 2qi � 1 ; i ¼ 1;2;3 ð16Þ

Thus, Equation 14 can be rewritten in terms of the Kink
energy and the input polarizations

cot2η ¼ �Ek

2Hab

X3
i¼1

Pdi ð17Þ
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And finally, using Equation 1 and the transformation
coefficients in Equations 9 and 10, the output
polarization of the MinV gate is obtained

Po ¼ þeð Þ cos2η� þeð Þ sin2η
þeð Þ cos2ηþ þeð Þ sin2η ¼ cos2η

¼ � cot2ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cot22η

p ð18Þ

Inserting Equation 17 into Equation 18, we can find
the polarization of the output cell of the MinV gate in
terms of the polarizations of the inputs straightfor-
wardly as

Po Pd1 ; Pd2 ; Pd3ð Þ ¼

Ek

2Hab

X3
i¼1

Pdiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ EK

2Hab

� �2 P3
i¼1

Pdi

� �2
s ð19Þ

Equation 19 in two-dot mQCA is analogous to Equa-
tion 7 in four-dot metal-based QCA, where the tunnel-
ing energy γ appears as electronic coupling of redox
centers (Hab) in Equation 19. They also imply

Po d1; d2; d3ð Þ ¼ Po d1 þ d2 þ d3ð Þ ð20Þ
The additivity relation in Equation 20 originates from

the additivity of electrostatic potential energy in Equa-
tion 13 for diabatic states.
Multidriver MinV gates help reduce the number of

needed gates for implementation of a logic circuit. Simi-
larly, for an m-input MinV gate, we obtain

Po Pd1 ; Pd2 ; . . . ;Pdmð Þ ¼ Po
Xm
i¼1

Pdi

 !

¼

Ek

2Hab

Xm
i¼1

Pdiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ek

2Hab

� �2 Pm
i¼1

Pdi

� �2
s

ð21Þ
We refer to Equaiton 21 as the two-state model

(TSM) for mQCA gates along this paper. The Ek and the
Hab are the only parameters of the TSM. Once the geo-
metrical parameter l is determined, experimentally or
from theoretical calculations, the Kink energy can be
calculated using Equation 15. The electronic coupling
matrix element, Hab, can be calculated using various
quantum chemistry techniques [34,38-41] or obtained
via spectroscopic experiments, including absorption
[42,43], EPR [44], and ultraviolet photoelectron spectros-
copy [45]. As we will present, the parameter μ=Ek/2Hab

plays an important role in the accuracy of the TSM. It is
also the slope of the switching response function at the
origin i.e.,

@Po

@
Pm
i¼1

Pdi

Pm
i¼1

Pdi¼0
¼ μ

������ ð22Þ

Results and discussion
The chemistry of mixed-valence complexes has received
considerable attention recently in mQCA device imple-
mentation, where the intramolecular electron transfer
and charge localization at redox sites are the important
key factors. Mixed-valence compounds contain more
than one redox site in the same molecule or molecular
unit. Simple model molecules for two-dot cells are the π-
σ-π mixed-valence types, which were proposed by
Aviram and studied later by Hush [3,46]. In the Aviram's
model molecule (1, 4-diallyl butane cation), the two π-
allyl groups form two redox centers and are connected
by a σ-butyl bridge. One of the allyl groups is a neutral
radical, while the other one is anionic (or cationic). The
possibility of charge localization in some mixed-valence
mQCA candidate molecules has been examined theoret-
ically as well as experimentally [15,47,48]. Advances in
quantum chemistry in the past half century provide reli-
able methods to explore the electronic structure of mole-
cules; however, many of the ab initio techniques fail in
describing charge distribution in mixed-valence com-
plexes. The unrestricted Hartree-Fock method overesti-
mates the charge localization due to the neglect of
electron correlation effects [49]. In the density functional
theory (DFT) method, the exchange potential defined in
hybrid functional leads to underestimation of charge
localization [47,49]. The complete active space self-
consistent field (CASSCF) method [50,51] is believed to
be the most reliable for describing charge distribution in
mixed-valence complexes [50]. However, the multi-
determinant CASSCF calculations scale with the system
size, which makes this method highly demanding in com-
puter time and memory. The number of Slater determi-
nants has factorial dependence on both the number of
active electrons and particularly on the number of active
orbitals generating many-electron configurations (full
configuration interaction (CI) within the active space).
This is much more significant than any dependence on
the number of one-electron basis functions. The number
of Slater determinants in a full CI calculation is given by:

nSlater ¼ M
Nα

� �
M
Nβ

� �
ð23Þ

where M is the number of active orbitals, Nα and Nβ are
the numbers of active electrons with α- and β-spins,
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respectively, and the quantities in parentheses are bino-
mial coefficients:

a
b

� �
¼ a!

b! a� bð Þ! ð24Þ

We present full quantum chemistry calculations of the
steady-state output polarization of the universal MinV
model gate serving as INV and three-input MinV gates.
The results based on full quantum chemical calculations
are compared to the results obtained from the TSM. The
π-σ-π mixed-valence type molecules, descended from
Aviram's original idea are analyzed. These molecules in-
clude 1, 6-heptadiene, 1, 8-nonadiene, and 1, 4-diallyl bu-
tane radical cations, which will be referred to as
molecule 1, molecule 2, and molecule 3 in this paper, re-
spectively (Figure 4). We optimized the geometry of
these monocations using the DFT/B3LYP method. The
dot-dot distance, l, in these molecules is between 0.5 to
0.8 Å. Bistability and electron localizability of these
molecules have been studied in [3,46,49].
Koopmans' theorem [52] has found extensive application

in calculation of the ET matrix element, Hab for symmetric
molecules. Under the two-state approximation, Hab is
Figure 4 Geometry of the molecules we used in our calculations. 1, 6-
monocations from left to right. In the first two molecules, coordinates of th
coordinates of the central carbon have been set to origin. For 1, 4-diallyl b
two central carbon atoms.
related to adiabatic energies of the ground and first excited
state (E1 and E2) as [34]

Hab ¼ 1=2ð Þ E2 � E1
� 	

sin2η ð25Þ
When no driver is present or the sum of the input dri-

vers is zero, Po=0; and from Equation 18 it is clear that
Cos2η=0, thus

Hab ¼ 1=2ð Þ E2 � E1ð Þ ð26Þ

According to the one electron Koopmans' theorem, the
ionization potential of the highest occupied molecular or-
bital (HOMO) and HOMO-1 can be expressed in terms of
the molecular orbital (MO) energies, i.e., [38-41]

IHOMO ¼ �EHOMO ð27Þ
IHOMO�1 ¼ �EHOMO�1 ð28Þ

Inserting Equations 27 and 28 into Equation 26, the
electronic coupling element is obtained in terms of the
MO energies as [38-41]

Hab ¼ 1=2ð Þ EHOMO � EHOMO�1ð Þ ð29Þ
The state-averaged CASSCF (SA/CASSCF) method [53]

can be used to calculate the electronic coupling element
heptadiene, 1, 8-nonadiene, and 1, 4-diallyl butane radical
e three highlighted atoms have been set to xy plane, while the
utane, the origin has been set in the middle of the bond between the



Table 2 INV gates

1,6-heptadiene 1,8-nonadiene 1,4-diallyl butane

Pd Po Po
* Po Po

* Po Po
*

0.0 −0.068 0 −0.058 0 −2.3 E-05 0

0.1 −0.126 −0.101 −0.217 −0.207 −0.987 −0.974

0.2 −0.191 −0.200 −0.398 −0.389 −0.987 −0.993

0.3 −0.260 −0.293 −0.534 −0.536 −0.989 −0.997

0.4 −0.323 −0.378 −0.630 −0.646 −0.990 −0.998

0.5 −0.378 −0.455 −0.695 −0.726 −0.992 −0.998

0.6 −0.423 −0.523 −0.740 −0.785 −0.994 −0.999
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of asymmetric molecules. One can obtain Hab by calculat-
ing the energies of the ground and first excited states and
use them in Equation 26 within the two-state approxima-
tion. We have calculated the electronic coupling elements
using both methods. The calculations for molecule 1 and
2 were based on SA/CASSCF(3,4), and the calculations
for molecule 3 were based on SA/CASSCF(5,6). In 1, 4-
diallyl butane cation, the allyl π-bonds are aromatic, and
the active space is extended to five electrons in six orbitals.
The calculated ET matrix elements have been compiled in
Table 1. The Kink energies of the molecules have also
been calculated using Equation 15. Table 1 includes all
required parameters of the TSM. All calculations reported
here were performed in Gaussian 09 [54], using 6-31 G(d)
basis set. Various basis sets have been extensively tested to
examine the basis set dependency of the results. Applica-
tion of larger basis sets did not significantly influence the
energy difference between the ground state and the first
excited state. The results from the two methods are in
good agreement. The ET matrix element, Hab decays ex-
ponentially with dot-dot distance, l [55]. The dot-dot dis-
tance for molecule 3 is less than that of molecule 2;
however, the Hab has been remarkably decreased. This
is due to the symmetry of this molecule and the aromatic
bonds of the radical allyls. The geometrical parameter, l,
and the type of head groups, play an important role in de-
termining the ET matrix element. To obtain a more ac-
curate electronic coupling element, the overlap integral,
Sab, should be taken into account as described in the work
of Farazdel et al [56]. Aviram [3] has obtained a negligible
overlap integral for molecule 3 with dot-dot distance of
7 Å. In mQCA, the electron transfer drama should have a
little effect on the geometric parameters [4]. Conse-
quently, candidate molecules should possess fast electron
transfer reactions, and the relaxation of nuclear degrees of
freedom can be ignored. Table 1 also lists the changes in
the head groups' π-bonds (Δζ) as a consequence of ET
reactions. It is seen that ET reactions in molecule 3 should
be faster compared to the other two molecules.

INV gates
The INV gate in two-dot mQCA is the nucleus of all
other gates. Once its operation and switching properties
Table 1 Two-state model parameters for the used
molecules

Molecule (cation) 1Hab (eV) 2Hab (eV) l (nm) Ek (eV) |μ| 3Δζ (Å)

1,6-heptadiene 0.310 0.368 0.56 −0.7531 1.023 0.06969

1,8-nonadiene 0.14 0.12 0.83 −0.5081 2.117 0.07002

1,4-diallyl butane 0.00707 0.00693 0.7 −0.6025 43.04 0.00905
1Hab has been calculated based on the Koopmans' theorem and DFT/B3LYP
method.
2Hab has been calculated based on the SA/CASSCF method.
3Calculations have been done based on CASSCF method.
are clearly understood, the properties of more intricate
structures such as multidriver MinV gates can be
derived from extrapolating the results obtained from
the inverters, based on the additivity relation (Equa-
tion 20). The analysis of inverters can be extended to
explain the behavior of more complex gates, which in
turn form the building blocks for modules such as
adders, multipliers, and processors. Table 2 compares
the output polarizations of the INV gates, obtained
from full quantum chemistry calculations and the TSM.
The normalized dipole moments (Equation 2) of the
monocations adjacent to fixed inputs (point charges as
fixed drivers) have been calculated based on SA/
CASSCF(3,4) for molecule 1 and 2, and SA/CASSCF
(5,6) for molecule 3. The root mean square errors
(RMSE) of the results obtained from the two methods
have been calculated. The RMSE decreases with the in-
crease of the μ parameter (or decrease of the ET matrix
element, Hab), determining the degree of agreement be-
tween the results. The saturation polarization of the
output is also dependant on the μ parameter. For INV
gates, it is obtained by setting the sum of the input dri-
vers to one in Equation 21 as

Po
satj j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=μ2
p ð30Þ

Equation 30 shows that the saturation polarization of
the output increases with the increase of μ. This is also
evident from the results in Table 2.
0.7 −0.460 −0.582 −0.771 −0.828 −0.996 −0.999

0.8 −0.490 −0.633 −0.793 −0.861 −0.997 −0.999

0.9 −0.513 −0.677 −0.808 −0.885 −0.998 −0.999

1.0 −0.531 −0.715 −0.818 −0.904 −0.999 −0.999

RMSE* 0.104 0.050 0.006

When there is a single driver, the change in the sign of the input will result in
a change in the sign of output polarization. The negative inputs have been
omitted to reduce the size of the table.
Po and Po

* denote the calculated output polarizations based on the SA/CASSCF
and TSM methods respectively.
RMSE* represents the root mean square errors of Po and Po

* .
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Two-driver devices
In the model MinV gate, the number of input drivers
(m) should be odd. No logic operation is performed
when m is even. However, neglecting the logic, the two-
driver device is an appropriate small model system for
studying the additivity relation, and how the accuracy of
the TSM is influenced by the number of drivers. Here,
the MinV gate is probed when only the two input drivers
d1 and d3 are present (Figure 3a). We have calculated
the normalized dipole moments of the gates' outputs
based on the SA/CASSCF calculations. The output
polarizations have also been calculated by the TSM. The
results obtained from the two methods are compiled in
Table 3, which are in good agreement. The conclusions
from analysis of the INV gates can be extrapolated to
two-driver devices as well. Compared to INV gates, the
increase in the RMSE of the two-driver devices, com-
posed of molecule 1 or 2, is mainly attributed to the
asymmetric head groups. In other words, the effect of d1
on the head groups is different from that of d3, where
Pd1 = Pd3. In molecule 3, the allyl head groups are sym-
metric, and the TSM error mainly arises from the clas-
sical approximation of the intercellular interactions. It is
important to note that the output polarization of the
two-driver devices can be calculated by employing the
additivity relation on the output polarizations of the
INV gates. The additivity relation has been validated for
the SA/CASSCF method as well. Through full quantum
chemistry calculations, the output polarizations of the
two-driver devices were obtained. We also used the results
of the INV gates, P(Pd1+ Pd2) from Table 2, to examine
the additivity relation for SA/CASSCF method. As
expected, RMSE is highly dependent on the symmetry of
the head groups. Unlike molecule 1 and 2, for the case of
molecule 3, each driver has an exactly same effect on the
Table 3 Two-driver devices

Pd1 Pd2 1,6-heptadiene 1,8-no

Po(Pd1, Pd2) Po(Pd1 + Pd2) Po(Pd

0 0 −0.068 −0.068 −0.05

0.2 0.2 −0.316 −0.323 −0.62

0.4 0.2 −0.431 −0.423 −0.75

0.6 −0.2 −0.326 −0.323 −0.65

0.8 0.2 −0.560 −0.531 −0.84

1 −0.4 −0.383 −0.423 −0.71

0.4 −0.2 −0.204 −0.191 −0.45

1 −0.2 −0.469 −0.490 −0.78

0.6 −0.8 0.090 0.191 0.07

RMSE 0.038 0.11

RMSE* 0.137 0.10

Po(Pd1, Pd2) and Po(Pd1 + Pd2) denote the calculated output polarizations based on th
RMSE has been calculated based on Po(Pd1,Pd2) and Po(Pd1 + Pd2).
RMSE* has been calculated based on Po(Pd1, Pd2) and Po

* (Pd1 + Pd2) from Table 2.
head allyl groups, which leads to smaller RMSE. We also
highlight that employing additivity relation decreases the
computational cost of SA/CASSCF calculations. Table 2
and Table 3 also show how the accuracy of the TSM is
affected by the number of input drivers. It is seen that
RMSE is approximately doubled when the number of in-
put drivers is scaled up by a factor of two.

Three-input MinV gates
The multidriver MinV gate is a universal gate in the
two-dot mQCA. The output polarizations of these gates
with three fixed input drivers are shown in Table 4. This
table also shows that the output polarizations of the
MinV gates can be obtained from extrapolating the INV
output polarizations using the additivity relation. For the
model molecules, considering the spatial location of the
d2, the effect of d2 on the head groups is different from
the same effect of d1 and d3, while in the TSM, drivers
with equal polarizations have same effects on the head
groups and are treated the same. Quantum chemical cal-
culations show that despite the equal sum of the input
polarizations, the output polarizations are not equal par-
ticularly when the sum of the drivers is zero. Table 4
also displays that the SA/CASSCF method returns differ-
ent output polarizations, while the sum of the input
polarizations is zero. This is the main reason of the de-
crease in the accuracy of the results obtained from the
TSM for MinV gates. Ignoring these points by avoiding
the null state logic occurrence, the two-state approxima-
tion results are fairly in good agreement with the
quantum chemical calculations. Table 2 and Table 4
show how the accuracy of the two-state model is
decreased with the number of drivers. It is seen that
RMSE is tripled when the number of input drivers is
scaled up by a factor of three.
nadiene 1,4-diallyl butane

1, Pd2) Po(Pd1 + Pd2) Po(Pd1, Pd2) Po(Pd1 +Pd2)

8 −0.058 −0.001 −0.001

5 −0.630 −0.998 −0.992

3 −0.740 −0.994 −0.987

1 −0.630 −0.998 −0.992

0 −0.768 −0.985 −0.979

8 −0.740 −0.995 −0.988

4 −0.398 −0.999 −0.993

8 −0.793 −0.990 −0.984

5 0.398 0.997 0.991

2 0.005

8 0.014

e SA/CASSCF method.



Table 4 Three-driver MinV gates

Pd1 Pd2 Pd3 1,6-heptadiene 1,8-nonadiene 1,4-diallyl butane

Po Po
* Po Po

* Po Po
*

0 0 0 −0.005 0 −0.015 0 −0.001 0

0.2 0.2 1 −0.605 −0.819 −0.826 −0.947 −0.993 −0.999

0.4 0.2 0.6 −0.596 −0.775 −0.825 −0.930 −0.996 −0.999

0.6 −0.2 1 −0.610 −0.819 −0.826 −0.947 −0.993 −0.999

0.8 0.2 −1 −0.064 0 −0.289 0 −0.992 0

1 −0.4 1 −0.617 −0.853 −0.828 −0.959 −0.989 −0.999

0.4 −0.2 −0.2 −0.061 0 −0.143 0 −0.954 0

1 −0.2 1 −0.627 −0.878 −0.832 −0.967 −0.984 −0.999

0.6 −0.8 −0.2 0.197 0.378 0.377 0.646 0.988 0.998

−0.4 −0.8 −0.8 0.639 0.898 0.837 0.973 0.993 0.999

0.6 0.8 1 −0.617 −0.950 −0.836 −0.981 −0.969 −0.999

1 1 1 −0.634 −0.926 −0.830 −0.987 −0.957 −0.999

RMSE* 0.213 0.162 0.397

RMSE** 0.244 0.153 0.019

Po and Po
* denote the calculated output polarizations based on the SA/CASSCF and TSM methods, respectively.

RMSE* has been calculated based on Po(Pd1, Pd2, Pd3) and Po
* (Pd1 + Pd2 + Pd3).

RMSE** has been recalculated when points with Po
* = 0 have been omitted.
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Conclusions
Molecular QCA gates are the building blocks of more
complex modules. Probing molecular devices requires
quantum chemical calculations, which are challenging
as the molecular system grows in size. A semi-classical
model was derived directly from the two-state approxi-
mation in the ET theory, serving as a device for study-
ing mQCA gates. This model is very similar to the
two-state model which is currently the core of the
QCADesigner simulation engine for solving circuits
based on metallic QCA. The range of applications and
limitations of this model for mQCA gates was investi-
gated carefully. The parametric TSM can be used to
study more complex mQCA gates composed of prac-
tical candidate mixed-valence molecules, where exploit-
ing the SA/CASSCF method is of high computational
cost. A complete set of logic gates were implemented
within the two-dot mQCA framework. These gates in-
clude INV and MinV gates, which provide a small mo-
lecular test bench, making further analysis by quantum
chemistry methods, particularly SA/CASSCF, practical.
The INV gate was studied as a nucleus of all other
gates. It was also presented that output polarizations of
all other gates can be derived from extrapolating the
results obtained from inverters based on the additivity
relation. We compared the results obtained from the
TSM to those obtained from SA/CASSCF calculations
for INV and MinV gates. The degree of agreement be-
tween the TSM and quantum chemical calculations is
highly dependent on the μ parameter and the sym-
metry of the head groups. Additionally, application of
the additivity relation for CASSCF method can in turn
reduce the computational cost. It is important to note
that we did not address questions of surface attach-
ment, input/output, clocked control, layout, and pat-
terning, which are the requirements of a practical
QCA system. Moreover, we did not consider the relax-
ation of nuclear degrees of freedom associated with
electron transfer. It is presented that for mQCA, the
electron localization and Coulombic interactions play
the key roles, and nuclear positions can be considered
frozen (nuclear relaxation even assists charge
localization) [4]. Although we limited our focus on
the two-dot mQCA, it merits highlighting that the model
can also be used for four-dot cells, since they can be con-
sidered as double two-dot cells. Our focus was on the
mQCA gates as building blocks of circuits. The two-state
model may be applied to simulate mQCA circuits as well,
as it is currently used iteratively for simulation of metallic
QCA circuits in the QCADesigner. However, to determine
the additive error resulting from exploiting the two-state
model for solving mQCA circuits, further quantum chem-
ical calculations on the mQCA clocked circuits composed
of several molecules are required, which are extremely
challenging at the time, and have not been addressed in
this paper.
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