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Effect of Ag/Al co-doping method on optically
p-type ZnO nanowires synthesized by hot-walled
pulsed laser deposition
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Abstract

Silver and aluminum-co-doped zinc oxide (SAZO) nanowires (NWs) of 1, 3, and 5 at.% were grown on sapphire
substrates. Low-temperature photoluminescence (PL) was studied experimentally to investigate the p-type behavior
observed by the exciton bound to a neutral acceptor (A0X). The A0X was not observed in the 1 at.% SAZO NWs by
low-temperature PL because 1 at.% SAZO NWs do not have a Ag-O chemical bonding as confirmed by XPS
measurement. The activation energies (Ea) of the A0X were calculated to be about 18.14 and 19.77 meV for 3 and
5 at.% SAZO NWs, respectively, which are lower than the activation energy of single Ag-doped NW which is about
25 meV. These results indicate that Ag/Al co-doping method is a good candidate to make optically p-type ZnO
NWs.
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Background
Zinc oxide (ZnO) has emerged as a superior n-type II-VI
compound semiconductor material with high chemical
and physical stability as well as a direct, wide bandgap
(3.37 eV) and high exciton binding energy (60 meV) at
room temperature [1]. ZnO has potential applications due
to its various attractive properties such as transparency,
ferromagnetic, optical, photoelectric, gas sensing, and
piezoelectric properties and a wide range of electrical
properties, from dielectric to conductive materials [2-5].
Wide-bandgap ZnO optoelectronics have been stimulated
by the investigation of materials for use in the next
generation of short-wavelength optoelectronic devices and
have revealed good results, including high transmittance
and mobility [6,7]. As-grown ZnO nanostructures typically
show an n-type semiconductor due to their intrinsic defects
such as oxygen vacancies and zinc interstitials [8]. The
strong n-type conductivity of ZnO restricts its application,
which makes it difficult to fabricate p-type ZnO materials
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[5], and the realization of p-type ZnO is rather difficult due
to its asymmetric doping limitations [9]. Recently, research
on ZnO has been focused on the synthesis of p-type ZnO
using various dopants including N, P, As, Sb, and Ag
[5,10-12]. Among possible acceptor dopants, Ag (a group
Ib element) is a good candidate for producing a shallow
acceptor level in ZnO, if incorporated on substituted Zn
sites [13]. The Ag-doped ZnO for the various applications
has been reported by Kang et al. [14]. They demonstrated
that the Ag ion can be substituted into the site of the Zn
ion and a narrow window region exists to fabricate the
p-type ZnO using Ag as a p-type dopant source. However,
there have been no reports on the perfect fabrication of
p-type ZnO nanowires (NWs) using Ag dopant.
Several research groups proposed a co-doping method

where the acceptor dopants and group III elements are
used such as co-doping of nitrogen and gallium by
pulsed laser deposition (PLD), nitrogen and indium by
ultrasonic spray pyrolysis, and nitrogen and aluminum by
reactive magnetron sputtering [15-17]. Lu et al. reported
to fabricate p-type ZnO structures by co-doping with
nitrogen and aluminum [17]. They demonstrated that
simultaneous co-doping using acceptors and reactive
donors could be expected to enhance the solubility of
acceptors in ZnO and to raise shallow acceptor levels in
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the bandgap [17,18]. Therefore, the incorporation of accep-
tors in ZnO was remarkably enhanced due to the presence
of aluminum. However, controlling nitrogen at room
temperature is very difficult because nitrogen in air exists
in a gas state. So, we used Ag dopant for making a p-type
semiconductor in a ZnO matrix instead of nitrogen.
In this work, we have investigated the growth behavior

of various silver and aluminum-co-doped zinc oxide
(SAZO) NWs on an Al2O3 (0001) substrate by hot-walled
pulsed laser deposition (HW-PLD) which is one of the
special methods for nanostructure synthesis. After opti-
mizing the process condition for NW formation in the
HW-PLD, we verified the Ag-doping status, confirmed
the exciton bound to a neutral acceptor (A0X) by low-
temperature (13 K) photoluminescence (PL), and com-
pared thermal activation energies (Ea) of single-doped and
co-doped ZnO-based NWs.

Methods
The fabrication methods of NWs have been developed to
be realized at nanoscale such as thermal evaporation, PLD,
and wet chemical processing [19,20]. Among various
growth methods, the PLD has several notable advantages
which are very effective in obtaining the stoichiometry of
synthesized materials on the substrate as a target than
many other gas surface-based growth techniques [21].
SAZO NWs of 1, 3, and 5 at.% have been synthesized on
sapphire (0001) substrates in HW-PLD with a 20-Å Au film
as a catalyst. SAZO NWs of 1, 3, and 5 at.% are grown in
a furnace temperature of 800 °C with Ar gas of 90 sccm
and a working pressure of 1.2 Torr. The HW-PLD has a
target rotating system ensuring homogeneous target abla-
tion. A KrF excimer laser (248 nm) operating at a pulse
repetition rate of 10 Hz is focused onto pure ZnO and 1,
3, and 5 at.% SAZO targets for the deposition. The energy
density of the laser is set to 1.2 J/cm2, and the shot area
on the target surface is 0.042 cm2. Before synthesis, there
should be a pre-deposition process with a laser shot time
of 5 min on the surface of the target. The deposition
process is continued for 30 min.
The target in this process is synthesized using high-purity

ZnO (99.999%, Kojundo Chemical Laboratory, Sakado-shi,
Japan), Ag2O (99.99%, Kojundo Chemical Laboratory), and
Al2O3 (99.99%, Kojundo Chemical Laboratory) powders.
The ethanol-based solutions of Ag and Al powders are
ground and mixed with the ZnO powder by planetary
milling for 48 h. The target is finalized by sintering at
950 °C for 3 h.
The low-temperature PL spectroscopy is a very sensitive

tool for characterizing acceptor/donor impurities and is
helpful to understand the optical and electrical perfor-
mances of the materials. We focus on the temperature de-
pendence of PL measurements of various SAZO NWs to
reveal the role of the Ag acceptor in the optical properties
of the ZnO NWs. Temperature-dependent PL (Dongwoo
Fine-Chem Co., Ltd., Seoul, South Korea) spectra analyses
are performed from 13K to room temperature using a
325-nm He-Cd laser, and a cycle refrigeration system is
used to lower the temperature of the sample to 13 K during
the low-temperature PL measurement. The crystal morph-
ology is characterized using a field-emission scanning elec-
tron microscope (FE-SEM) and a transmission electron
microscope (TEM), and the Ag element is observed in
ZnO NWs by X-ray photoelectron spectroscopy (XPS)
which is carried out to investigate the elemental com-
position of ZnO-based NWs.

Results and discussions
Figure 1 shows a schematic diagram of the HW-PLD sys-
tem for the fabrication of various SAZO NWs. The self-
designed HW-PLD enables the synthesis of metal oxide
NWs while controlling the doping concentration featuring
doping control by adjusting the target composition since
it guarantees the transfer of the composition from the
target to the NWs. The KrF excimer laser beam enters
along the tube furnace and is focused on the surface of
Ag/Al-doped ZnO mixed target, thus allowing in situ
modulation of chemical composition. The FE-SEM images
show the controlled morphology of the SAZO NWs when
the Ag/Al concentration is set to (a) 1, (b) 3, and (c) 5 at.%,
respectively, as shown in Figure 2. The orientation and the
distribution of the SAZO NWs with the diameter ranging
from 50 to 90 nm and the length ranging from 3 to 7 μm
are random, as shown in Figure 2. With the increasing
Ag/Al co-doping concentrations, an irregular distribution
of the SAZO NWs with different shapes has been
observed. The diameter, length, and density of the SAZO
NWs are clearly depending on the different doping
concentrations. It is considered that the irregularity of the
heavily doped sample stems from the lattice stress induced
due to the substitution of Ag into the Zn site [22]. In order
to investigate the effect of the Ag/Al co-doping method on
structural properties of ZnO-based NWs, we have
performed X-ray diffraction (XRD), high-resolution TEM,
and selected area electron diffraction (SAED). Figure 2d,e,f
shows HR-TEM images of 1, 3, and 5 at.% SAZO NWs,
respectively. With the increasing Ag/Al doping concentra-
tion, the surface morphology of various SAZO NWs
becomes rough, and stacking faults are generated. This
means that the doping induces the stress which originated
from the affinity mismatches and size between the original
lattice elements and the substitutional dopants. The insets
of Figure 2d,e,f are SAED patterns of 1, 3, and 5 at.% SAZO
NWs, respectively. As shown in the inset of Figure 2d, the
growth plane of 1 at.% SAZO NW shows two growth
planes with (002) and (101). The (002) growth plane with a
lattice spacing of about 0.26 nm is a c-axis of common
wurtzite ZnO, and the (101) growth plane is another axis of
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Figure 1 A schematic diagram of the HW-PLD system for the fabrication of the various SAZO NWs. The self-designed HW-PLD enables
the synthesis of oxide NWs while controlling the doping concentration featuring doping control by adjusting the target composition since it
guarantees the transfer of the composition from the target to the NWs.
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common wurtzite ZnO [23]; the insets of Figure 2e,f show
the primary growth plane which changed from (002) to
(101) caused by Ag/Al co-doping stress which is another
doping effect. Figure 3 shows high-resolution XRD data
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Figure 2 The SEM and TEM images of various SAZO NWs. The Ag/Al c
respectively. The insets are SAED patterns.
with 1, 3, and 5 at.% SAZO NWs. All SAZO NWs reveal
three peaks which originated from ZnO materials, in-
cluding (100), (002), and (101). However, both (100) and
(002) peaks of 3 and 5 at.% SAZO NWs are decreased
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o-dopant concentration is set to (a, d) 1, (b, e) 3, and (c, f) 5 at.%,
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Figure 3 The high-resolution XRD data. All SAZO NWs reveal
three peaks which originated from ZnO materials, including (100),
(002), and (101).
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Figure 4 The binding energy of both related Ag and Al
elements by XPS measurement. The binding energy of both
related Ag and Al elements by XPS measurement for the presence
of Ag dopant in (a) 1, (b) 3, and (c) 5 at.% SAZO NWs. A sharp,
strong peak which originated from the Ag chemical bonding peak
(Ag 3d5/2) of the SAZO NWs is observed at 369.2 and 369.1 eV for 3
and 5 at.% SAZO NWs, respectively. The doping conditions of 3 and
5 at.% SAZO NWs have been optimized to make Ag-doped ZnO
NWs by Ag and Al co-doping technique.
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when the concentration of Ag/Al dopants increased over
3 at.%. This indicates that the primary growth direction of
3 and 5 at.% SAZO NWs is changed from (002) to (101).
The primary growth (101) plane of SAZO NWs is attribu-
ted to the reduced doping stress in the ZnO lattice because
the Ag+ ions have a larger radius (0.122 nm) compared
with the host Zn2+ ions (0.072 nm). In the case of 1 at.%
SAZO NW, it shows a (221) peak of Ag-Al chemical
bonding located at 38.42 eV that is a defect as an intersti-
tial dopant. Therefore, the XPS result of 1 at.% SAZO
NW just shows Ag-Al chemical bonding at 368.3 eV as
shown in Figure 4a. The energy-dispersive X-ray spectros-
copy (EDX) spectra reveal the weight/atomic percent of
Zn, Al, and Ag elements in various SAZO NWs as shown
in Table 1. The atomic ratios of silver in 1, 3, and 5 at.%
SAZO NWs are 0.17%, 1.02%, and 1.25%, respectively, and
the weigh ratios of silver in 1, 3, and 5 at.% SAZO NWs
are 0.31%, 1.89%, and 2.48%, respectively. All SAZO NWs
show the increasing weight/atomic percent ratio of silver
when the amount of the Ag/Al co-dopant is increased.
This means that the silver doping concentration of SAZO
NWs depends on the silver dopant ratio of the target.
Also, all SAZO NWs show a low doping concentration of
silver because metal combination of combined silver and
aluminum with gold particle as catalyst has remained at
the top of the SAZO NW confirmed by EDX analysis.
In order to understand the origins of the chemical

bonding, the binding energies of both related Ag and Al
elements in 1, 3, and 5 at.% SAZO NWs are investigated
by XPS measurement as shown in Figure 4. The binding
energy of Ag2-Al metallic bond in 1 at.% SAZO NWs is
observed at 368.3 eV. In other words, the chemical
bonding of Ag-O (with the role of an acceptor) is not
observed in 1 at.% SAZO NWs as shown in Figure 4a.
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Figure 5 Temperature-dependent PL spectra from (a) 1, (b) 3,
and (c) 5 at.% SAZO NWs. The temperature dependence of PL of the
SAZO provides the reference for the PL analysis of the co-doped ZnO
NWs, in which dominant peaks of the exciton bound to the neutral
acceptor are clearly found at 3.355 and 3.356 eV for 3 and 5 at.% SAZO
NWs, respectively. It demonstrates the successful Ag doping into the
ZnO structure with both 3 and 5 at.% Ag/Al co-doping conditions.

Table 1 EDX spectra reveal the weight/atomic percent of
Zn, Al, and Ag elements in SAZO NWs

1 SAZO 3 SAZO 5 SAZO

Wt.% At.% Wt.% At.% Wt.% At.%

Zn K 98.84 99.59 95.63 96.84 94.28 95.93

Al K 00.85 00.28 02.48 02.14 03.24 02.82

Ag L 00.31 00.17 01.89 01.02 02.48 01.25
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The silver ions are substituted in the Zn site when the
Ag/Al co-dopants are successfully doped in ZnO NWs.
However, the XPS data of 1 at.% SAZO NWs show only
a Ag2-Al metallic bond which acts as an interstitial de-
fect in ZnO NWs. It means that the doping condition of
1 at.% Ag/Al co-dopants could not act as a desirable ac-
ceptor in ZnO-based NWs. However, the XPS data of 3
and 5 at.% SAZO NWs show Zn, O, and Ag orbital as
shown in Figure 4b,c, respectively. A sharp, strong peak
which originated from the Ag chemical bonding peak
(Ag 3d5/2) of the SAZO NWs is observed at 369.2 and
369.1 eV for 3 and 5 at.% SAZO NWs, respectively, as
shown in the inset of Figure 4b,c. Also, the binding ener-
gies of both 369.2 and 369.1 eV are close to Ag 3d5/2 of
the Ag-O bond. The Ag 3d5/2 peaks of 3 and 5 at.% SAZO
NWs show a very sharp and high intensity which means
that Ag dopants are successfully doped into the ZnO struc-
ture. From these results, the doping concentrations of 3
and 5 at.% Ag/Al co-dopants are best conditions to make
p-type ZnO NWs.
Figure 5 shows the temperature-dependent PL spectra

of various SAZO NWs. With increasing temperature from
13 to 300 K, the exciton peaks of various SAZO NWs are
screened and shifted due to the phonon vibration and the
thermal release of electrons from the shallow level [24].
Sharp, strong peaks which originated from the near-band-
edge (NBE) emission of all SAZO NWs are observed at
around 369 nm. In the case of 1 at.% SAZO NW, it shows
only one strong peak at the 3.359 eV which is the exciton
bound to the neutral donor (D0X) as shown in Figure 5a.
This means that the condition of 1 at.% Ag/Al concentra-
tion could not be functionalized as a p-type dopant in the
ZnO NWs. In other words, 1 at.% SAZO NW is an n-type
nanostructure. Therefore, 1 at.% SAZO NWs do not show
acceptor-related peaks such as A0X and donor-acceptor
pair (DAP). However, in the cases of 3 and 5 at.% SAZO
NWs, they show two kinds of peaks at around 3.36 eV in-
cluding D0X and A0X peaks at low temperature. This
means that the optical property of 3 and 5 at.% SAZO
NWs is changed from an n-type semiconductor to a
p-type semiconductor. Hwang et al. revealed that the peak
around 3.355 eV is A0X-related by a phosphorous dopant
[25]. Therefore, the observed peaks at 3.355 (Figure 5b)
and 3.356 eV (Figure 5c) should be related with A0X in 3
and 5 at.% SAZO NWs, respectively. So, the Ag dopants
of 3 and 5 at.% Ag/Al co-doping concentrations can easily
act as the p-type acceptor. In other words, optimized 3 and
5 at.% Ag/Al co-doping concentrations are good conditions
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to make optically p-type ZnO NWs as confirmed by EDX,
XPS, and PL measurements. As the temperature decreases,
the NBE peaks are shifted from a long wavelength to a
short wavelength due to the bandgap broadening effect
[26-28]. Other peaks of 3 and 5 at.% SAZO NWs located at
3.321 and 3.317 eV appeared at low temperature as shown
in Figure 5b,c. However, 1 at.% SAZO NWs do not show
weak emission peaks at around 3.31 eV. According to the
report of Zhang et al., the DAP peak of ZnO-related NWs
at around 3.31 eV is observed in the 3 and 5 at.% SAZO
NWs [29]. Therefore, the weak emission peaks in the 3
and 5 at.% SAZO NWs at around 3.31 eV are the DAP
peaks.
Figure 6 shows the Arrhenius plots of A0X peaks

on 3 and 5 at.% SAZO NWs. The Ea of 1 at.% SAZO
NWs could not be calculated because 1 at.% SAZO
NWs have only D0X peak. This result demonstrates
that the A0X peaks of various SAZO NWs are very
sensitive depending on the concentration of Ag/Al
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Figure 6 The Arrhenius plots of the exciton bound to the
neutral acceptor's PL intensity. (a) 3 and (b) 5 at.% SAZO NWs.
Resultant activation energies of the A0X formation are calculated to
be about 18.14 and 19.77 meV for 3 and 5 at.% SAZO NWs,
respectively.
co-dopants. From the Arrhenius equation, the Ea can
be expressed as [30]:

I ¼ A

1þ Bexp �Ea
kT

� �� � ; ð1Þ

where A and B are the scaling factors, Ea is the activation
energy, and k is Boltzmann's constant. Resultant activation
energies of the A0X peaks are calculated to be about 18.14
and 19.77 meV for 3 and 5 at.% SAZO NWs, respectively.
The activation energies of 3 and 5 at.% SAZO NWs show
lower values compared with the activation energy of single
Ag-doped ZnO NW which is higher than 25 meV in this
study [31]. In other words, 3 and 5 at.% Ag/Al concentra-
tions easily help to substitute Ag dopants in Zn sites. Con-
sequently, 3 and 5 at.% Ag/Al co-doping methods are
good conditions to make optically p-type ZnO NWs.

Conclusions
In summary, we have synthesized various silver/aluminum-
co-doped ZnO NWs on sapphire substrates by hot-walled
pulsed laser deposition with Au catalysts. The XPS data of
1 at.% SAZO NWs show Ag2-Al metallic bond. This
means that this condition generates Ag-Al metal com-
pound which acts as an interstitial defect in ZnO NWs.
Therefore, 1 at.% SAZO NWs have only one peak at
3.359 eV which originated from the D0X. However, new
peaks of 3 and 5 at.% SAZO NWs located at 3.355 and
3.356 eV originated from the exciton bound to neutral
acceptors. Also, the activation energies of 3 and 5 at.%
SAZO NWs show lower values compared with the Ea
of single Ag-doped ZnO NWs. We can conclude that
3 and 5 at.% Ag/Al co-doping methods facilitate to
make optically p-type ZnO NWs.
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