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Abstract

We fabricate freely suspended nanosheets of molybdenum disulphide (MoS2) which are characterized by
quantitative optical microscopy and high-resolution friction force microscopy. We study the elastic deformation of
freely suspended nanosheets of MoS2 using an atomic force microscope. The Young’s modulus and the initial pre-
tension of the nanosheets are determined by performing a nanoscopic version of a bending test experiment. MoS2
sheets show high elasticity and an extremely high Young’s modulus (0.30 TPa, 50% larger than steel). These results
make them a potential alternative to graphene in applications requiring flexible semiconductor materials.
PACS, 73.61.Le, other inorganic semiconductors, 68.65.Ac, multilayers, 62.20.de, elastic moduli, 81.40.Jj, elasticity and
anelasticity, stress-strain relations.
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Background
The application of graphene in semiconducting devices is
hindered by its lack of a bandgap. Up to now, two different
strategies have been employed to fabricate semiconducting
two-dimensional crystals: opening a bandgap in graphene
[1-3] or using another two-dimensional crystal with a
large intrinsic bandgap [4]. Atomically thin molybdenum
disulphide (MoS2), a semiconducting transition metal
dichalcogenide, has recently attracted a lot of attention
due to its large intrinsic bandgap of 1.8 eV and high mobi-
lity μ > 200 cm2 V-1 s-1 [5,6]. In fact, MoS2 has been
employed to fabricate field-effect transistors with high on/
off ratios [5], chemical sensors [7] and logic gates among
other things [8]. Nevertheless, the study of the mechanical
properties of this nanomaterial (which will dictate its
applicability in flexible electronic applications) has just
begun [9,10]. In a previous work, we studied the mechani-
cal properties of freely suspended MoS2 nanosheets using

a bending test experiment performed with the tip of an
atomic force microscope (AFM) [10].
Here, we perform a more detailed characterization of

the fabricated nanosheets by quantitative optical micro-
scopy and high-resolution friction force microscopy, and
we extend the study of the mechanical properties to a lar-
ger number of MoS2 nanosheets (with thicknesses in the
range of 5 to 25 layers) to improve the robustness of our
statistical analysis. We present force versus deformation
curves measured not only by pushing the nanosheets (as
usual) but also by pulling them, demonstrating that for
moderate deformations pushing and pulling the
nanosheets are equivalent. These measurements allow for
the simultaneous determination of the Young’s modulus
(E) and the initial pre-tension (T) of these MoS2
nanosheets.

Methods
Although atomically thin MoS2 crystals can be fabricated
by scotch-tape-based micromechanical cleavage [11], this
procedure can leave traces of adhesive. Thus, it is prefer-
able to use an all-dry technique based on poly (dimethyl)-
siloxane stamps which have been successfully employed to
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fabricate ultra-clean atomically thin crystals of graphene
[12], graphene nanoribbons [13], NbSe2, MoS2 [14], and
muscovite mica [15]. In order to fabricate freely suspended
atomically thin MoS2 flakes, the cleaved flakes are trans-
ferred to a pre-patterned oxidized silicon wafer [16] with
circular holes 1.1 μm in diameter and 200-nm deep.
After fabrication, an optical microscope (Nikon eclipse

LV100, Nikon Instruments Inc., Melville, NY, USA) is
used to identify MoS2 flakes at first glance. In fact, ultra-
thin MoS2 flakes deposited onto a silicon wafer with a
285-nm-thick SiO2 capping layer can be easily identified
by optical microscopy. Figure 1a shows a chart of the
expected color of MoS2 flakes with different thicknesses
when they are laying on the surface or covering a hole.
The expected color has been calculated with a Fresnel
law-based model, employing the refractive index of MoS2
in [14] and the response of the camera as indicated in
[17]. The topography of selected flakes is then studied by
contact mode atomic force microscopy to avoid possible
artifacts in the flake thickness measurements [18]. Figure
1b, c is an optical micrograph and a contact mode AFM
topography, respectively, of an 8-layer-thick MoS2 flake
deposited onto a 285-nm SiO2/Si pre-patterned substrate.
Additionally, high resolution contact mode AFM mea-

surements can provide lattice resolution even in the sus-
pended region of the MoS2 flakes which demonstrates the
very clean nature of our fabrication technique. Figure 1d, e
shows two lateral force maps (friction images) obtained in
the suspended and the supported parts of the MoS2 flake
shown in Figure 1c. The atomic resolution can be better
resolved in the suspended region of the MoS2 flake (Figure
1d), while in the supported part, the frictional force image
mainly follows parallel stripes (Figure 1e). We have
employed a two-dimensional Tomlinson model [19] to
simulate the frictional force image measured in the sup-
ported part of the nanolayer (see inset in Figure 1e), find-
ing a remarkable qualitative agreement. Interestingly, by
reducing a 25% in the depth of the surface potential
employed in the simulation the calculated friction force
image qualitatively matches the one measured in the sus-
pended part of the MoS2 nanomembrane (Figure 1d). This
difference in the frictional force image can be due to a
slight modification of the MoS2 lattice induced by the pre-
tension of the suspended part of the sheet. However, a
detailed analysis of the tension dependence of frictional
force images and their interpretation, although interesting,
is beyond the scope of this work.

Results and discussion
Once the suspended nanosheet under study is identified
and characterized, we measure its elastic mechanical prop-
erties using the AFM tip to apply a load cycle in the center
of the suspended region of the nanosheet while its defor-
mation is measured, as shown in the inset of Figure 2a.

When the tip and sample are in contact, the elastic defor-
mation of the nanosheet (δ), the deflection of the AFM
cantilever (Δzc), and the displacement of the scanning
piezotube of the AFM (Δzpiezo) are related by the following
equation:

δ = �zpiezo − �zc (1)

The force applied is related to the cantilever deflection
as F = kc·Δzc, where kc is the spring constant of the can-
tilever (kc = 0.75 ± 0.20 N/m [20]).

Figure 1 Identification and characterization of freely suspended
MoS2 nanosheets. (a) Color chart displaying the calculated color for
MoS2 nanosheets with different number of layers laying on the
substrate (supported) or covering a hole (suspended). (b) Optical
micrograph of a 4.8-nm-thick (8 layers) MoS2 flake deposited on top
of a 285-nm SiO2/Si substrate pre-patterned with an array of holes 1.1
μm in diameter. Even though the flake covers two holes, it is thin
(and transparent) enough to permit optical identification of the
covered holes, which present a slightly different color from the
uncovered holes, as predicted by the color chart shown in (a). (c)
Contact mode AFM topography of the region marked by the
rectangle in (b); (inset) topographic line profile acquired along the
dashed line in (c). (d) and (e) Raw friction forward images acquired in
contact mode AFM in a suspended and a supported region, marked
by a red circle and a blue square in (c), respectively. The insets in (d)
and (e) show two friction images simulated with a two-dimensional
Tomlinson model. Both images have been simulated employing the
same crystal lattice and orientation but different depth of the
potential well (see text for a full discussion).
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Figure 2a shows three different deformations versus
force (F(δ) hereafter), measured for nanosheets with 5,
10, and 20 layers in thickness, not only by pushing the
sheets but also by pulling them. For small deformations,
these F(δ) traces are linear with a slope that defines the
effective spring constant of the nanolayer (keff) [21]:

keff =
∂F
∂δ

∣∣∣∣
δ=0

=
4πE

3(1− ν2)
·
(
t3

R2

)
+ πT (2)

with ν the Poisson’s ratio (ν = 0.125, [22]), t the thick-
ness, and R the radius of the nanosheet. As the effective
spring constant depends on both the Young’s modulus
and the pre-tension constant, one cannot separately
determine these values just from the slope of a F(δ)
trace. To independently determine E and T, however,
one can use the thickness dependence of the effective
spring constant. Indeed, according to Equation 2, the
first term (which accounts for the bending rigidity of
the layer) strongly depends on the sheet thickness, while
the second one (which accounts for the initial pre-ten-
sion) is thickness independent. Fitting the measured keff
versus thickness to Equation 2, one can determine E
and T. Figure 2b shows the measured keff as a function
of the thickness of 31 different MoS2 layers and the fit
to the experimental data using the following:

E = 0.30± 0.10 TPa and T = 0.15± 0.15 N/m (3)

This Young’s modulus value is extremely high, only
one third lower than exfoliated graphene (one of the
stiffest materials on earth with E = 0.8 to 1.0 TPa)
[23,24] and comparable to other 2D crystals such as gra-
phene oxide (0.2 TPa) [25] or hexagonal boron nitride
(0.25 TPa) [26]. It is also remarkable that the E value is
restrained between 0.2 and 0.4 TPa, indicating a high
homogeneity of the MoS2 flakes, which is much smaller
than the one observed for graphene (0.02 to 3 TPa) [27]
or graphene oxide (0.08 to 0.7 TPa) [25]. The high
Young’s modulus of the ultrathin MoS2 flakes (E = 0.30
± 0.10 TPa compared to the bulk value Ebulk = 0.24 TPa
[28]) can be explained by a low presence of stacking
faults. Indeed, the thinner the nanosheet the lower the
presence of stacking faults, allowing the study of the
intrinsic mechanical properties of the material.

Conclusion
We have studied the mechanical properties of ultrathin
freely suspended MoS2 nanosheets with 5 to 25 layers
thick. The mean Young’s modulus of these suspended
nanosheets, E = 0.30 ± 0.07 TPa, is extremely high, and
they present low pre-strain and high strength, being
able to stand elastic deformations of tens of nanometers
elastically without breaking. In summary, the low pre-
tension and high elasticity and Young’s modulus of
these crystals make them attractive substitutes or alter-
natives for graphene in applications requiring flexible
semiconductor materials.

Abbreviations
AFM: Atomic force microscope; MoS2: Molybdenum disulphide.
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