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Abstract

We investigate multiple quantum well [MQW] structures with charge control layers [CCLs] to produce highly
efficient blue phosphorescent organic light-emitting diodes [PHOLEDs]. Four types of devices from one to four
quantum wells are fabricated following the number of CCLs which are mixed p- and n-type materials, maintaining
the thickness of the emitting layer [EML]. Remarkably, such PHOLED with an optimized triplet MQW structure
achieves maximum luminous and external quantum efficiency values of 19.95 cd/A and 10.05%, respectively. We
attribute this improvement to the efficient triplet exciton confinement effect and the suppression of triplet-triplet
annihilation which occurs within each EML. It also shows a reduction in the turn-on voltage from 3.5 V (reference
device) to 2.5 V by the bipolar property of the CCLs.

Background
Due to their high efficiency, phosphorescent organic
light-emitting diodes [PHOLEDs] are promising light-
emitting materials in organic light-emitting diodes
[OLEDs]. An internal quantum efficiency of 100% could
be realized in red and green PHOLEDs [1,2]. However,
the performance of blue PHOLEDs still needs to be
improved for lighting applications. Light emission in
PHOLEDs depends on the properties of the organic
material in the devices [3,4]. In particular, the energy
level of the charge transport, host, and emitter materials
influences the light-emitting efficiency. Besides, many
different device architectures have attempted to improve
the light-emitting efficiency of PHOLEDs. Hole and
electron blocking layers or triplet exciton blocking layers
[TEBLs] in PHOLEDs were introduced to confine both
carriers and excitons within emitting layers [EMLs] [5].
A double emitting layer structure was also employed in
OLEDs by utilizing phosphorescent materials doped in

two different hosts. As a result, these ways were effective
in providing higher efficiency in PHOLEDs [6].
Another way to achieve high efficiency in OLEDs is to

confine excitons inside the EML using the multiple
quantum well [MQW] structure [7]. Only a few reports
concerning the MQW structure with good carrier and
exciton confinement ability have been presented on
OLEDs until quite recently. For example, Qiu et al. [7]
improved the charge balance by utilizing an organic
MQW structure to decelerate hole transportation.
Huang et al. [8] used MQW structures to increase the
carrier recombination efficiency, where both charges
and excitons were confined to the EMLs. Park et al. [9]
and Kim et al. [10] also reported similar triplet MQW
structures. Recently, Liu et al. [11] proposed a non-dop-
ing EML method, instead of a host-emitter doping
method, to improve the efficient triplet exciton confine-
ment effect and the suppression of triplet-triplet annihi-
lation that occurs via a single-step long range (Forster-
type) energy transfer between excited molecules.
In this paper, we demonstrate efficient blue PHOLEDs

by using iridium(III) bis[(4, 6-di-fluorophenyl)-pyridi-
nato-N,C2’]picolinate [FIrpic] doped in N,N’-dicarbazo-
lyl-3, 5-benzene [mCP] with charge control layers
[CCLs] as an MQW structure. The device architecture
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was developed to confine excitons inside each EML and
to manage triplet excitons by controlling the charge
injection. A stacked recombination zone structure,
which can prevent triplet quenching processes and tri-
plet exciton confinement within recombination region,
was designed, and its performance was compared with
that of blue devices. In addition, a mixed CCL, which
has a p-type mCP and an n-type 2, 2’,2"-(1, 3, 5-benze-
netryl)tris(1-phenyl)-1H-benzimidazol [TPBi], reduced
the turn-on voltage and enhanced efficiencies by prohi-
biting triplet exciton diffusion out of each EML.

Methods
A glass substrate coated with a 180-nm-thick indium tin
oxide [ITO] layer has a sheet resistance of 12 Ω/sq. The
ITO was cleaned with acetone, methanol, distilled water,
and isopropyl alcohol in an ultrasonic bath. The pre-
cleaned ITO was then treated with O2 plasma with the
conditions of 2 × 10-2 Torr, 125 W, and 2 min. All
organic layers were sequentially deposited onto the sub-
strate without breaking the vacuum at a pressure of 5 ×
10-7 Torr, using thermal evaporation equipment. The
deposition rates were 1.0 to 1.1 Å/s for organic materi-
als and 0.1 Å/s for lithium quinolate [Liq]. Finally, the
aluminum cathode was deposited at a rate of 10 Å/s.
The deposition rates were controlled with a quartz crys-
tal monitor, and the doping concentrations of the emit-
ters were optimized. After the organic and metal
depositions, the devices were encapsulated in a glove
box with O2 and H2O at concentrations below 1 ppm.
A desiccant material consisting of barium oxide powder
was used to absorb the residue moisture and oxygen in
the encapsulated device. The devices had emission areas
of 3 × 3 mm. The voltage, luminance, luminous effi-
ciency, external quantum efficiency, power efficiency,
and current density characteristics were measured and
immediately recorded with a Chroma meter CS-1000A
(Konica Minolta Holdings, Inc., Chiyoda, Tokyo, Japan).
The current and voltage were controlled with a mea-
surement unit (model 236, Keithely Instruments Inc.,
Cleveland, OH, USA).

Results and discussion
Figure 1a shows the chemical structures of FIrpic,
mCP, and TPBi materials of blue PHOLEDs. FIrpic is
the most well-known phosphorescent blue emitter, and
mCP, as a carbazole-based material, is known to be a
potential host material for blue electrophosphorescence
because of its wide bandgap energy, high triplet energy,
and good hole-transporting ability [12-14]. In addition,
the high electron mobility of TPBi that provides good
transport characteristics and barrier height of exciton
diffusion out of EMLs do not exist due to the high

triplet energy level of TPBi [15]. Figure 1b shows the
structures and energy level diagrams of blue PHOLEDs
(devices A, B, C, and D). A series of phosphorescent
blue devices were prepared with the structure of ITO
as an anode; N,N’-bis-(1-naphyl)-N,N’-diphenyl-1, 1’-
biphenyl-4, 4’-diamine (NPB, 50 nm) as a hole trans-
porting layer; mCP (5 nm) as a TEBL; single EML
(device A) or MQW structure EMLs (devices B, C, and
D); TPBi (10 nm) as a TEBL and electron transporting
layer [ETL]; 4, 7-diphenyl-1, 10-phenanthroline
(BPhen, 30 nm) as an ETL; Liq (2 nm) as an electron
injection layer; and aluminum (Al, 100 nm) as a cath-
ode. As shown in Figure 1b, devices A, B, C, and D
have the following EML structure: device A, FIrpic
doped in mCP (30 nm) as a reference device; device B,
n consists of [FIrpic doped in mCP (12.5 nm)]n = 2 and
[CCL (mCP/TPBi = 1:1, 5 nm)]n = 1; device C, n con-
sists of [FIrpic doped in mCP (6.6 nm)]n = 3 and [CCL
(mCP/TPBi = 1:1, 5 nm)]n = 2; device D, n consists of
[FIrpic doped in mCP (3.75 nm)]n = 4 and [CCL
(mCP/TPBi = 1:1, 5 nm)]n = 3 as an MQW structure
device, where the doping concentrations of FIrpic were
optimized at 8 wt.%, respectively. MQW structure
devices with CCLs, which were a mixed mCP of hole
transport type and TPBi of electron transport type, can
control the carrier movement with ease.
Figure 2 shows the lowest triplet states [T1] of materi-

als, such as TEBL, EML, and CCL, and the triplet exci-
ton transfer mechanism in [EML]n = 2 and [CCL]n = 1 of
the triplet MQW structure. Both triplet exciton transfer
and energy transition are shown in dotted arrows, while
phosphorescence from the T1 state to the ground state
is shown in solid arrows. The T1 of mCP and TPBi were
2.90 eV and 2.73 eV, respectively, compared to 2.65 eV
for FIrpic [16,17]. From their triplet state alignments, it
can be speculated that there should be an efficient
exothermic energy transfer from the host material triplet
states to the FIrpic triplet state as well as an excellent
triplet energy confinement on the FIrpic molecules
within each EML. It is important to suppress any back
energy transfer from the emitter triplet states to the
others and enable consumption of all the electrically
generated triplet excitons contributing to the emission.
Figure 3 shows luminance versus voltage characteris-

tics, and the inset of Figure 3 shows current density ver-
sus voltage characteristics of devices A, B, C, and D.
The dotted circle on the graph of Figure 3 shows reduc-
tion in the turn-on voltage from 3.5 V of the reference
device (device A) to 2.5 V of the MQW structure device
(device D). Device A showed a lower current density
than devices B, C, and D at the whole driving voltages
because holes and electrons can be easily transported
through the CCLs, which were a mixed p-type mCP and
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n-type TPBi, for controlling the carrier movement. The
CCLs, including the TPBi of good electron-transporting
ability, enhanced the movement of electrons within the
EML and helped the holes’ movement slow down com-
pared with conventional single EML without any CCLs.
In this result, the turn-on voltage of devices B, C, and D
are lower than that of device A. This also indicates that
devices B, C, and D are better than device A for charge
balance within EMLs.
The current density, luminous efficiency, and quantum

efficiency of devices A, B, C, and D were compared, as
shown in Figure 4a, b. The maximum luminous efficien-
cies of devices A, B, C, and D were 17.99, 19.46, 19.95,
and 18.24 cd/A, and the maximum quantum efficiencies
of devices A, B, C, and D were 9.08%, 10.02%, 10.05%,
and 8.72%, respectively. As with device C with a triplet

MQW structure, n consists of [FIrpic doped in mCP
(6.6 nm)]n = 3; [CCL (mCP/TPBi = 1:1, 5 nm)]n = 2

shows the best luminous and external quantum effi-
ciency values of 19.95 cd/A and 10.05%, respectively. A
comparison of the performance of these four devices is
provided in Table 1. Device C exhibited higher efficien-
cies than devices A, B, and D due to the appropriate
broad recombination zone by controlling the optimiza-
tion of various EML thicknesses. In addition, the CCLs
(mCP/TPBi) partially confine holes and electrons at the
first EML, and some of the holes and electrons arrive at
the other EML after transporting through the CCL. This
phenomenon leads to the good charge balance and
broad recombination zone for blue emission. We could
control the optimization of EML thicknesses and
enhance the charge balance within EMLs. As for various

Figure 1 Material and device structures. (a) The chemical structures of FIrpic, mCP, and TPBi materials. (b) The structures and energy level
diagrams of blue PHOLEDs (devices A, B, C, and D).
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recombination zones, the triplet exciton diffusions are
prohibited inside each EML by CCLs with a high triplet
state (T1). It effectively reduces exciton quenching pro-
cesses, such as triplet-triplet annihilation and triplet-
polaron annihilation [18,19]. In the case of device D
with a triplet MQW structure, n consists of [FIrpic
doped in mCP (3.75 nm)]n = 4; [CCL (mCP/TPBi = 1:1,
5 nm)]n = 3 shows lower efficiencies than the other
devices due to a relatively narrow emissive region.

Conclusions
In conclusion, the present study reports on the high effi-
ciency blue PHOLEDs based on a carrier and triplet

exciton confinement inside recombination zones by
using a triplet multiple quantum structure. The triplet
energies of mCP and TPBi are higher than those of FIr-
pic. Therefore, triplet multiple quantum structures with
CCLs exhibited efficient carrier and triplet exciton con-
finement within each EML. Moreover, CCLs can play a
role in carrier movement with ease and triplet exciton
blocking as expected from high triplet energy levels. In
the electrical characteristic results of blue devices, the
properties of device C with three recombination zones
were found to be superior to the properties of devices
A, B, and D. We attribute such high efficiencies and
reduced turn-on voltage to the following two advantages
caused by the triplet MQW structure: (1) efficient
charge and exciton confinement effect by CCLs and
TEBLs with high triplet energy level and (2) charge
transportation balance in each EML by CCLs with

Figure 3 Electrical characteristics of blue PHOLEDs. The
luminance versus voltage characteristics (inset: current density
versus voltage characteristics) of devices A, B, C, and D. The dotted
circle on the graph shows reduction in the turn-on voltage from 3.5
V of the reference device (device A) to 2.5 V of the MQW structure
device (device D).

Figure 2 Schematic drawing of triplet energy levels. The lowest
triplet states (T1) of materials, such as TEBL, EML, and CCL, and the
triplet exciton transfer mechanism in [EML]n = 2 and [CCL]n = 1 of
the triplet MQW structure. Both triplet exciton transfer and energy
transition are shown in dotted arrows, while phosphorescence from
the T1 state to the ground state is shown in solid arrows.

Figure 4 Efficiencies of blue PHOLEDs . (a) The luminous
efficiency versus current density and (b) the external quantum
efficiency versus current density of devices A, B, C, and D.
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bipolar property. The described MQW device concept
may be useful to fabricate highly efficient devices for
future OLED display and lighting applications.
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Table 1 The electrical characteristics for blue PHOLEDs

Device Current density (mA/
cm2)

Luminance (cd/
m2)

Turn-on voltage
(V)

Luminous efficiency max. (cd/
A)

Quantum efficiency max.
(%)

A 115.75
(12 V)

8, 312
(12 V)

3.5 17.99 9.08

B 88.88
(12 V)

8, 521
(12 V)

3.0 19.46 10.02

C 86.56
(12 V)

7, 094
(12 V)

3.0 19.95 10.05

D 78.88
(12 V)

6, 856
(12 V)

2.5 18.24 8.72
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