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Abstract

Ti-6Al-4V alloys consisting of a-Ti grains and intergranular b-Ti islands were nitrided at 850°C for 1 to 12 h under a
nitrogen pressure of 1 Pa. With increasing nitriding time, the Ti-N compound layer became thicker, and the a-Ti
diffusion zone containing dissolved nitrogen became wider. In the Ti-N compound layer, the initially formed Ti2N
became TiN as the nitriding progressed. The nitride layers were oxidized to rutile-TiO2 after oxidation at 700°C for
10 h in air.
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Introduction
Titanium alloys are widely used in the aircraft, automo-
bile, chemical, and biomedical industries due to their
high specific strength, good corrosion resistance, and bio-
compatibility. However, their main drawbacks are their
low hardness and poor wear resistance. In order to over-
come these problems, various nitriding techniques
including diffusion, ion-plasma, detonation, laser, and
high-energy methods have been applied to synthesize
TiN surface layers [1-7]. TiN films are the most widely
used films in such industrial applications as cutting tools,
die molds, mechanical parts, diffusion barriers in micro-
electronics, and decorative items [8-10]. In this study, the
gas nitriding technique, a type of thermodiffusion treat-
ment, was utilized to synthesize TiN films on the Ti-6Al-
4V alloy. It takes advantage of the high reactivity of tita-
nium with nitrogen to produce hardened surface layers
that are well bonded to the tough matrix, without dete-
riorating the mechanical properties. For industrial appli-
cation, a full understanding of the gas nitriding technique
and high-temperature oxidation behavior of the nitrided
Ti alloys is necessary because these wear-resistant, hard
TiN films are frequently exposed to oxidative atmo-
spheres during their service life. Since TiN films begin to
oxidize at temperatures as low as 550°C, their thermal
stability is important [11,12]. However, the effect of

oxidation on nitrided Ti alloys is not well established.
The diffusion of oxygen from the atmosphere to the reac-
tion interface or the desorption of nitrogen from the
reaction interface to the atmosphere was proposed as the
main factor governing the oxidation of TiN films [12-14].
The purpose of this study is to investigate the nitride
layers that formed on Ti-6Al-4V alloys under controlled
gas nitriding conditions and their high-temperature oxi-
dation characteristics.

Experimental details
Ti-6Al-4V alloy was used as the substrate as it is the
most widely used titanium alloy. The substrates were
cut into dimensions of 15 × 10 × 1 mm3, polished with
a 0.1-μm diamond paste to reduce the maximum value
of the roughness, Ra, to 0.4 μm, degreased in benzene,
washed with deionized water, and nitrided via the fol-
lowing gas nitriding technique. The substrates were
placed in the reaction chamber inside the furnace in a
vacuum of 10-3 Pa, heated to 850°C at a heating rate of
0.04°C/s, held at this temperature for 1, 6, or 12 h at
PN2 = 1 Pa, cooled to 500°C at a cooling rate of 0.03°C/s
at PN2 = 1 Pa, and further cooled to room temperature
in a vacuum of PN2 = 10-3 Pa. Nitrogen was deoxyge-
nated by filtering the moisture and oxygen through
silica gel and titanium chips at 1, 000°C. Oxidation tests
on the nitrided specimens were conducted at 700°C in
atmospheric air for 10 h.
The nitrided and subsequently oxidized specimens

were investigated by scanning electron microscopy
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[SEM], electron probe microanalysis [EPMA], X-ray dif-
fraction [XRD] with CuKa radiation at 40 kV and 300
mA, and transmission electron microscopy [TEM]
(operated at 200 keV) in conjunction with EDS with a
5-nm spot size. The TEM sample was prepared by
milling in a focused ion beam system after carbon
coating.

Results and discussion
Figure 1 shows the EPMA image and the corresponding
elemental maps of the Ti-4Al-6V substrate. The a-Ti
grains (dark area in Figure 1a) were rich in Al, and the
intergranular b-Ti (white islands in Figure 1a) was rich
in V. This is due to the fact that Al is an a stabilizer,
while V is a b stabilizer.
Figure 2 shows the XRD patterns of the Ti-4Al-6V

alloys nitrided at 850°C. After nitriding for 1 h, a dis-
tinct, tetragonal Ti2N layer was formed on the a-Ti-rich
matrix (Figure 2a). After nitriding for 6 h, the a-Ti-rich
matrix peaks became weaker and weak fcc-TiN peaks
appeared, owing to the increased nitriding time (Figure
2b). Here, Ti2N began to exhibit a preferred orientation
along the (002) direction. After nitriding for 12 h, the
a-Ti matrix peaks disappeared, whereas weak TiN peaks
and strong Ti2N peaks with a (002) preferred orientation
appeared (Figure 2c). Hence, it is seen that the a-Ti-rich
matrix transformed into Ti2N from the surface and
later, into TiN as the nitriding progressed. Ti2N exists
in a narrow range of approximately 34 at.%N, while TiN
displays a wide range of nitrogen solubility above 38 at.

%N at 850°C in the Ti-N phase diagram. The formation
of Ti2N indicates that the minimum nitrogen content of
34 at.%N is attained after nitriding for 1 h (Figure 2a).
The Ti-6Al-4V alloy exhibits an allotropic transition
between the low-temperature hcp a-Ti and the high-
temperature bcc b-Ti at 995°C. Since nitriding was per-
formed at a temperature lower than the b-transus tem-
perature, a-Ti, TiN, and Ti2N were detected in Figure
2a, b. When the Ti alloys were nitrided at 950°C to 1,
050°C for 1 to 5 h in atmospheric nitrogen, surface
layers of TiO2, TiN, Ti2N, and a-Ti with N in a solid
solution (viz. a-Ti(N)) were formed [1-3]. In this study,
the residual oxygen was well regulated so as not to form
TiO2.
Figure 3 shows the SEM images of the nitrided Ti-

4Al-6V alloys. Regardless of the nitriding time, all of the
surfaces exhibited a golden yellow color and consisted
of fine nitrides with a smooth surface. The nitrided Ti-
4Al-6V alloys in all of the cross-sectional images con-
sisted of an outer Ti-N compound layer, inner a-Ti(N)
diffusion zone, and matrix. According to Figure 2, the
compound layer consisted of Ti2N with and without
TiN, and the diffusion zone consisted of a-Ti having
dissolved nitrogen. It is noted that a-Ti can dissolve up
to 7.6 wt.% nitrogen. After nitriding for 1 h, the thick-
nesses of the Ti-N layer and Ti(N) zone were 0.8 and
2.5 μm, respectively (Figure 3a). After nitriding for 6 h,
their thicknesses were 2.3 and 4.6 μm, respectively (Fig-
ure 3b), and after 12 h, their thicknesses were 5 and 14
μm, respectively (Figure 3c). On the other hand, when
pure Ti was nitrided at 1, 100°C for 12 h in atmospheric
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Figure 1 Ti-6Al-4V alloy before nitriding (etched with Kroll’s
etchant; 2% HF in water). (a) EPMA image. Maps of (b) Ti, (c) Al,
and (d) V.
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Figure 2 XRD patterns of Ti-6Al-4V alloys. Nitriding at 850°C for
(a) 1, (b) 6, and (c) 12 h.
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nitrogen, a 20-μm-thick TiN layer and a 50-μm-thick a-
Ti(N) layer were formed [4]. Also, when pure Ti was
nitrided at 1, 250°C for 5 h in atmospheric nitrogen, a
35-μm-thick TiN layer was formed [6]. The thicknesses
of the nitride layers were larger, and Ti2N was not
detected in Vojtěch et al. [4] and Seahjani and Cimeno-
glu [6]. This discrepancy from the results obtained in
this study is attributed to the higher nitriding tempera-
tures and pressures employed in Vojtěch et al. [4] and
Seahjani and Cimenoglu [6]. Intergranular b-Ti islands
within the Ti(N) zone were not recognizable in the

cross-sectional images because nitrogen is a potent a
stabilizer, and the diffused nitrogen transformed the
intergranular b into a. As the nitriding time increased,
the thickness of the Ti-N layer and moreover, that of
the Ti(N) zone increased together with the grain growth
of the matrix.
Figure 4 shows the TEM cross-sectional image of the

Ti-6Al-4V alloy after nitriding at 850°C for 1 h. The ele-
mental concentrations along spots 1 to 13 are listed in
Table 1. It is however noted that the N-Ka, Ti-La, and
V-La spectra overlap at approximately 0.39 keV, and
the signal of nitrogen with a low atomic number is atte-
nuated because of its low characteristic energy. Hence,
the concentrations listed in Table 1 are tentative. Never-
theless, nitrogen diffused interstitially to form an outer,
0.9-μm-thick Ti-N layer (spots 1 and 2). There should
exist an inner Ti(N) zone below spot 3. Aluminum was
locally segregated at spots 3 to 6 due to its limited solu-
bility in the nitrides [7].
Figure 5a shows the cross-sectional image of the Ti-

6Al-4V alloy after nitriding at 850°C for 12 h. The ele-
mental concentrations along spots 1 to 9 are listed in
Table 2. Spots 1 to 6 correspond to the outer, 4-μm-
thick Ti-N layer, below which the inner Ti(N) zone
exists. Spots 3, 5, and 7 were determined to be TiN
(Figure 5b), TiN plus a-Ti(N) (Figure 5c), and a-Ti(N)
(Figure 5d), respectively. Aluminum tended to be
depleted around the outer Ti-N layer and be enriched at
spots 7 and 8. Such a tendency was however weak for
vanadium.
Figure 6 shows the XRD patterns of the Ti-4Al-6V

alloys after nitriding at 850°C for 1, 6, or 12 h, followed
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Figure 3 SEM top-view and etched cross-sectional images of
Ti-6Al-4V alloys. Nitriding at 850°C for (a) 1, (b) 6, and (c) 12 h. Ti-
N, compound layer; Ti(N), diffusion zone.
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Figure 4 TEM cross-sectional bright-field image of the Ti-6Al-
4V alloy after nitriding at 850°C for 1 h.
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by oxidization at 700°C for 10 h in air. For the samples
nitrided for 1 and 6 h, the initial TiN and Ti2N nitrides
were completely oxidized to rutile-TiO2 on the a-Ti
matrix. In the case of the sample nitrided for 12 h, Ti2N
with a preferred orientation along (002) was still
retained underneath the TiO2 surface scale. It is noted
that Ti nitrides have better oxidation resistance than a-
Ti because of the strong interaction between titanium
and nitrogen, which decreases the thermodynamic activ-
ity of titanium and acts as a diffusion barrier against the
inward diffusion of oxygen [5].
The samples outlined in Figure 6 were inspected by

SEM as shown in Figure 7. All top views display fine
oxide grains with rather rough surfaces. All of the cross-
sectional images indicate the presence of 3- to 4-μm-
thick oxide layers. In Figure 7a, b, the Ti-N layers with

original thicknesses of 0.8 to 2.3 μm were completely
oxidized. In Figure 7c, the Ti-N layer with an original
thickness of 5 μm was partially oxidized.

Conclusions
The nitriding of Ti-6Al-4V alloys at 850°C at PN2 = 1 Pa
resulted in the dissolution of the interstitial nitrogen and
the formation of nitrides. When nitrided for 1 h, a 0.8-
μm-thick Ti-N compound layer that consisted of Ti2N
and a 2.5-μm-thick a-Ti(N) diffusion zone that con-
sisted of Ti having dissolved nitrogen were formed.
When nitrided for 6 h, a 2.3-μm-thick compound layer
consisting of Ti2N and TiN and a 4.6-μm-thick a-Ti(N)
diffusion zone were formed. When nitrided for 12 h, a
5-μm-thick compound layer consisting of Ti2N and TiN

Table 1 Concentration of spots 1 to 13 shown in Figure 4
(at.%)

Spot number Ti Al V N

1 90.2 0 0 9.8

2 85.5 0 0 14.5

3 79.7 18.6 1.7 0

4 77.6 20.9 1.5 0

5 80.5 18.1 1.4 0

6 85.5 12.4 2.1 0

7 87.3 11.7 1.0 0

8 87.8 10.9 1.3 0

9 88.4 10.3 1.3 0

10 88.8 10.1 1.1 0

11 88.8 9.8 1.4 0

12 88.4 10.2 1.4 0

13 88.8 9.7 1.5 0
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Figure 5 Ti-6Al-4V alloy after nitriding at 850°C for 12 h. (a)
TEM cross-sectional bright-field image. Selected area electron
diffraction patterns of spots (b) 3, (c) 5, and (d) 7.

Table 2 Concentration of spots 1 to 9 shown in Figure 5
(at.%)

Spot number Ti Al V N

1 56.0 1.2 5.3 37.5

2 91.8 0 2.8 5.4

3 89.2 0 2.9 7.9

4 89.5 0.7 3.3 6.5

5 78.4 5.3 6.5 9.8

6 88.0 5.1 5.0 1.9

7 85.1 9.4 5.4 0.1

8 85.0 8.5 6.5 0

9 86.8 6.3 6.9 0
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Figure 6 XRD patterns of Ti-6Al-4V alloys. Nitriding at 850°C for
(a) 1, (b) 6, and (c) 12 h in nitrogen gas, followed by oxidizing at
700°C for 10 h in air.
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and a 14-μm-thick a-Ti(N) diffusion zone were formed.
Aluminum tended to be depleted at the Ti-N compound
layer. The nitrides that were formed were oxidized to
rutile-TiO2 during oxidation at 700°C in air.
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Figure 7 SEM top-view and cross-sectional images of Ti-6Al-4V
alloys. Nitriding at 850°C for (a) 1, (b) 6, and (c) 12 h in nitrogen
gas, followed by oxidizing at 700°C for 10 h in air.
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