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Abstract

This paper investigates the buckling behavior of piezoelectric nanowires under distributed transverse loading,
within the framework of the Timoshenko beam theory, and in the presence of surface effects. Analytical relations
are given for the critical force of axial buckling of nanowires by accounting for the effects of surface elasticity,
residual surface tension, and transverse shear deformation. Through an example, it is shown that the critical electric
potential of buckling depends on both the surface stresses and piezoelectricity. This study may be helpful in the
characterization of the mechanical properties of nanowires and in the calibration of the nanowire-based force
sensors.
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Introduction
Nanowires have attracted considerable attention in the
literature for future applications as sensors, actuators,
transistors, and resonators in nanoelectromechanical
systems and in biotechnology [1]. Because of these var-
ied applications, it is very important to accurately char-
acterize the mechanical properties of nanowires and
their response to external loading. In atomistic scales,
owing to the increasing ratio of surface area to volume,
the stress and strain effects on surface physics become
very important [2]. In this regard, theoretical and
experimental investigations have provided a better
understanding of the effects of stress on surface physics
[3,4]. For example, by conducting bending tests using
atomic force microscopy, Cuenot et al. [4] have demon-
strated that the stiffness of nanowires is size-dependent,
and this phenomenon has been theoretically explained
by considering the surface effects [5-8]. He and Lilley
[6] investigated the influences of surface tension on the
static bending of nanowires. Wang and Feng [8] studied
the surface effects on the buckling and vibration beha-
viors of nanowires, based on the Laplace-Young equa-
tion. The theoretical investigations related to the surface

effects and mechanical behavior show a good agreement
with the experiments and atomistic simulations [3,6,9].
Recently, piezoelectric nanostructures, such as nano-

wires, have been drawing a lot of attention due to their
potential applications as nanoresonators [10], diodes
[11], and nanogenerators [12]. Piezoelectric nanomater-
ials exhibit size-dependent properties at nanoscale, and
also, it has been demonstrated that they have larger
piezoelectric constants than their bulk counterparts
[13,14]. Experimental measurements and atomistic
simulations demonstrate that the elastic and fracture
properties of ZnO piezoelectric nanowires vary with
their cross-sectional dimensions [5,15,16]. Zhao et al.
[17] found out that the effective piezoelectric coefficient
of the ZnO nanowire is frequency-dependent and that it
is much larger than that of the bulk material. Using the
perturbation theory [13] and finite element method [14],
the electrostatic potential in a bending piezoelectric
nanowire was calculated. For the first time, Wang and
Feng [18] used the Euler-Bernoulli beam model to
investigate the buckling and vibration behaviors of
piezoelectric nanowires by taking into account the
effects of surface stresses and piezoelectricity. Also, sur-
face effects and surface piezoelectricity are considered to
study the electromechanical coupling behavior of piezo-
electric nanowires with the Euler beam theory by Yan
and Jiang [19].* Correspondence: faramarz.samaei@gmail.com
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The objective of the present paper is to investigate the
combined surface and piezoelectric effects on the buck-
ling of piezoelectric nanowires using the modified
Timoshenko beam model. In this study, the two modi-
fied Euler beam and Timoshenko beam models have
been compared, but no quantitative experimental mea-
surement has been reported on the buckling condition
of piezoelectric nanowires. A numerical example is pre-
sented in the article to demonstrate both the surface
and piezoelectric effects, and then, some discussions are
provided based on the obtained results.

Formulation of the problem
The problem envisaged in this article is a hinged-hinged
piezoelectric nanowire with length l, width b, and height
2h, as shown in Figure 1. The mechanical properties of
the bulk part (E, G, and r) designate the Young’s

modulus, shear modulus, and mass density of the nano-
wire, respectively.
In the current study, a crystalline ZnO nanowire with

the C6v symmetry about the poling direction along the
z-axis [18] is considered, which has a surface layer with
surface elasticity modulus (E5) [20-22], which can be
determined by atomistic simulations or experiments
[3,23], surface layer thickness (t) [8], and constant resi-
dual surface tension (τ0) [18,24]. The effect of the resi-
dual surface stress acting as a transverse load on the
nanowire is calculated by the Laplace-Young equations
[25].
The ratio of surface energy g(J/m2) to Young’s modu-

lus E(J/m3), g/E, leads to some intrinsic length scale
material parameter in the nanometer range [26,27].
When a material element has a characteristic length
comparable to the intrinsic scale, the surface/interface

Figure 1 Schematic of a piezoelectric nanowire with surface layers.

Samaei et al. Nanoscale Research Letters 2012, 7:201
http://www.nanoscalereslett.com/content/7/1/201

Page 2 of 6



energy can play an important role in its properties and
behavior. According to Gibbs [26], the surface stress

tensor σ 5
αβ is related to the surface energy density g as

follows:

σ 5
αβ = γ δαβ + ∂γ /∂ε5αβ . (1)

where ε5αβ and δαβ represent the surface strain tensor

and the Kronecker delta, respectively. A one-dimen-
sional and linear surface constitutive equation of Equa-
tion 1 is stated by introducing a set of surface elastic
constants [4]:

σ 5 = τ 0 + E5ε. (2)

Equations 1 and 2 declare that the elastic responses of
nanoscale elements largely depend on the surface elastic
constants, which could be obtained either by atomistic
simulations or experimental measurements [4,28]. In the
present paper, the beam aspect ratio (aspect ratio corre-
sponds to length-to-height ratio) is relatively small; the
thick beam model needs to be applied to take the shear
deformations into consideration. Therefore, based on
the Timoshenko beam theory, the Laplace-Young equa-
tion predicts the transverse load on the nanowire as fol-
lows [8]:

q(x) = H
∂2w
∂x2

H = 2τ 0b (3)

The curvature of a bending beam is approximated by
∂2w/∂x2, where w is the deflection at the position x [29].
For the current study, the electric field is assumed to
exist in the z direction. For the one-dimensional piezo-
electric nanowire, the strain and stress can be obtained
as follows [30]:

εx = −z
∂2w
∂x2

σx = c22εx − e32Ez Ez =
∂ψ

∂z
τ = Gγ 0, (4)

where c22, e32, and ψ are the linear elastic constant,
the linear piezoelectric coefficient, and the electric
potential of the piezoelectric material, respectively, and

γ 0 =
∂w
∂x

− φ is the shear strain. For the piezoelectric

nanowire, the electric displacements with the applied
strain and electric field for the piezoelectric nanowire
can be written as follows [30]:

Dx = λ11Ex Dz = e31εx + λ33Ez Ex = −∂ψ

∂x
, (5)

where l11 and l33 are the dielectric constants. The
electric field component is Ex ≪ Ez because the electric
potential is almost constant along the nanowire (x-axis)
except around the two ends [13]. Using the electrostatic

equilibrium condition, the electric potential can be
obtained [18], and thus, the stress of the piezoelectric
nanowire can be calculated. For the hinged-hinged
piezoelectric nanowire, a resultant axial force (Tx) is
induced by the applied electric potential as follows [18]:

Tx = b
h
∫
−h

σxdz (6)

The kinematic energy of the system includes the
piezoelectricity effect and the residual surface tension
acting as an external distributed load on the piezoelec-
tric nanowire, whose work should be calculated. The
energy method was employed to obtain the differential
equation of the Timoshenko beam by considering the
effects of both the surface elasticity and piezoelectricity.
To derive the governing equation for the piezoelectric
nanowire, considering the surface effects, the present
study has followed the same procedure as that in the
work of Rao [29] for an elastic beam. Also, the influence
of surface stresses is modeled as a curvature-dependent
transverse loading, and the piezoelectric effect induces
an axial force in the piezoelectric nanowire. Considering
these two mechanisms, the equilibrium equation of the
beam is obtained [29] as follows:

(
1 +

τ 0 + Ve31
κGh

)(
c11

2bh3

3
+

e231
λ33

2bh3

3

)
∂4w
∂x4

− 2b
(
τ 0 + Ve31

) ∂2w
∂x2

= 0, (7)

where A and � are the cross-sectional area and the
shear correction factor of the cross section, respectively.
Generally, the shear correction factor is considered to
be in the range of 0.833 ≤ �2 ≤ 0.870. Since the applied
electric potential may induce a compressive axial force
due to piezoelectric effects, it is essential to determine
the critical electric potential for the buckling of piezo-
electric nanowires. Solving Equation 7 for the hinged-
hinged nanowire, the critical electric potential corre-
sponding to the buckling of the noted nanowire can be
obtained as follows:

2b
(
τ 0 + e31V

)
= −

ξ
(π

l

)2
(
c11

2bh3

3
+
e2312bh

3

λ33 3

)

1 + ξ
(π

l

)2

⎛
⎜⎜⎝

(
c11

2bh3

3
+
e2312bh

3

λ33 3

)

κGA

⎞
⎟⎟⎠

,
(8)

where ξ is the slenderness ratio (slenderness ratio cor-
responds to length-to-the least radius of gyration of the
cross section ratio) of the nanowire, and for a hinged-
hinged beam, ξ = 1 [8]. Equation 8 presents a relation
between the residual surface stress of a piezoelectric
nanowire and the critical electric potential in the buck-
ling analysis. Therefore, it can be inferred that the elasti-
city modulus and the residual surface stress could be
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obtained by measuring the critical electric potentials of
two nanowires with different sizes [18].

Example and discussion
To demonstrate the effects of both the surface elasticity
and piezoelectricity on the buckling of a piezoelectric
nanowire, a crystalline ZnO nanowire is considered for
a case study. The bulk material property constants of
this nanowire are the following: c11 = 207 Gpa, e31 =
-0.51 C/m2, and l33 = -7.88 × 10-11 F/m [18], and its
surface energy density on the (0001)-plane is g = 1.6 J/
m2 [30]. The formulations in the ‘Formulation of the
problem’ section indicate that the buckling behavior of
piezoelectric nanowires largely depends on their surface
and piezoelectric properties, which could be determined
either by experiments or atomistic simulations
[3,6,28,30]. For example, Miller and Shenoy [3] deter-
mined the free surface properties of aluminum using the
embedded atom method for some crystallographic direc-
tions. By neglecting the shear deformation effect in
Equation 8, the Euler model with surface effects is
obtained [18] as follows:

2b
(
τ 0 + e31V

)
= −

(π

l

)2
(
c11

2bh3

3
+

e231
λ33

2bh3

3

)
(9)

It is found from Equation 8 that the shear deforma-
tion lowers the critical compression force of buckling in
comparison with the classical Euler solution.

The distributed shear loading arising from the surface
tensions and axial tension which are produced by the
electric potential could cause buckling in nanowires. To
determine the buckling behavior of piezoelectric nano-
wires, the governing equation of motion (shown in the
‘Formulation of the problem’ section) has been obtained
based on the surface and piezoelectric effects, which
shows the significant influence of these effects. To better
demonstrate these effects on the buckling behavior of
the nanowire, the normalized critical electric potential
(Vcr/Vcr0) has been plotted versus the nanowire height
(h) in Figure 2. Here, Vcr0 is the critical electric poten-
tial for the buckling obtained from the Euler model
without the surface effects. Figure 2 has been plotted for
the first mode of buckling and also for several aspect
ratios. By observing the curves, it can be concluded that,
contrary to the classical model, the normalized critical
electric potential depends on a size characteristic such
as the nanowire height. These curves show that by redu-
cing the nanowire height to the sub-20-nm range, both
the surface and piezoelectric effects become more and
more influential. Moreover, as the nanowire height
increases, the curves converge and ultimately turn into
those of the classical case, pointing out the fact that
with the increase of the nanowire height, the surface
effects are eliminated. On the other hand, it is seen that
the normalized critical electric potential obtained from
the modified Timoshenko beam model is smaller than
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Figure 2 Influence of surface effects, shear deformation, and piezoelectricity on normalized critical electric potential of the
piezoelectric nanowire.
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that obtained from the modified Euler beam model,
which shows that, in order to get more exact results,
both the surface and shear deformation effects should
be taken into consideration.
Figure 3 illustrates the normalized critical electric

potential versus the aspect ratio for various nanowire
heights. In this diagram, the two modified Euler beam
and Timoshenko beam models have been compared.
The figure clearly shows that the normalized critical
electric potential is size-dependent, and as the nanowire
height gets smaller and tends to the nanometer size, the
surface effects become more significant, and the differ-
ence increases between the classical theory and the
modified theory in both the Euler and Timoshenko
beam models. On the contrary, when the nanowire
height increases, the curves converge each other, and
the results approach those of the classical theories. This
occurrence is the result of elimination of surface effects.
Also, it can be realized that the surface and piezoelectric
effects are more significant for a slender piezoelectric
nanowire with a larger aspect ratio. Shear deformation
reduces the normalized critical electric potential, and it
has a greater influence on nanowires with smaller aspect
ratios and improves the accuracy of the results com-
pared to those obtained by the modified Euler beam
theory.

In this study, the thickness of the surface layer has
been disregarded because it is very small relative to the
sizes of the nanowire’s geometrical parameters. Also, in
the present investigation, the assumption is that the
deformation of the nanowire is small and that the resul-
tant principle (the principle of superposition) can be
used to sum up the tensions arising from the surface
and piezoelectric effects; therefore, the effect of surface
tension has been modeled as a curvature-dependent
transverse loading, and the piezoelectric effect has been
modeled as an induced axial force in the nanowire.

Conclusion
In the present study, by applying the modified
Timoshenko beam theory and considering the effects of
surface, piezoelectricity, and shear deformation, the
buckling behavior of piezoelectric nanowires was investi-
gated. The obtained information can be used in the
design and characterization of piezoelectric nanowire-
based devices and instruments. The critical electric
potential for the buckling of piezoelectric nanowires
with the hinged-hinged boundary condition was derived
analytically. The results show that, in addition to the
surface effects, the shear deformation and piezoelectri-
city can effectively influence the buckling behavior of
nanowires as well. Also, it was observed that, contrary
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Figure 3 Effect of nanowire height on normalized critical electric potential of the piezoelectric nanowires.
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to the surface effects, the shear deformation tends to
reduce the critical electric potential and that it has a
greater influence on stubby nanowires with smaller
aspect ratios. Therefore, for smaller nanowire heights in
the nanometer range, the effects of surface elasticity,
piezoelectricity, and shear deformation should be taken
into consideration so that more accurate results are
obtained.
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