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Patterned Si thin film electrodes for enhancing
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Abstract

A patterned film (electrode) with lozenge-shaped Si tiles could be successfully fabricated by masking with an
expanded metal foil during film deposition. Its electrochemical properties and structural stability during the charge-
discharge process were examined and compared with those of a continuous (conventional) film electrode. The
patterned electrode exhibited a remarkably improved cycleability (75% capacity retention after 120 cycles) and an
enhanced structural stability compared to the continuous electrode. The good electrochemical performance of the
patterned electrode was attributed to the space between Si tiles that acted as a buffer against the volume change
of the Si electrode.
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Introduction
The secondary Li-ion batteries with a high energy den-
sity have gained attention from wide-range applications
of power source for the portable electronics, electric
vehicle, and electric storage reservoir. In order to
increase the energy density in the limited battery
volume, the volume of the cathodic electrode having Li
sources should be increased, whereas that of the anodic
electrode has to be decreased, that is, anode materials
with high theoretical capacity are needed to store the
large amount of Li ions.
For the anodic materials, some of the candidates are

Si, Sn, Al, Ge, and compounds including these elements
[1,2]. Si has a much higher specific energy (4,200 mAh/
g for Li4.4Si) than commercial graphite (372 mAh/g for
LiC6). However, there is a severe practical problem in
the application of Si electrodes, i.e., when Si is used as
an anode material for Li-ion batteries, a large volume
expansion/shrinkage occurs during the charge-discharge
(lithiation-delithiation) process. The volume change of
Si (310%) causes surface cracking and pulverization of
the Si film and leads to a rapid capacity fade during
initial cycles. The poor electrochemical performances
are ultimately caused by repetitive mechanical stress

accompanied by large volume changes [3]. Until now,
many attempts have been made to prolong the cycle life
of Si film electrodes [4-9]. Most researches focused on
enhancing the adhesion between the Si film and a cur-
rent collector (substrate) because the amount of Li sto-
rage was limited and the generation of stress was
restrained by the enhanced adhesion.
In this work, as a new approach to overcome the pro-

blem, space was given to the Si film like a patterned Si
film. The Si film including the space is expected to
accumulate the stress generated by the volume change
during the charge-discharge process. Figure 1 shows
schematic diagrams of the estimated changes in Si elec-
trodes with different film types of continuous (conven-
tional) and patterned films during the lithiation-
delithiation process. For a continuous Si film, the stress
generated by the volume expansion during lithiation
generates cracks in the Si film or the interface between
the film and substrate, and the volume shrinkage during
delithiation causes severe surface cracking [3,10]. In
contrast, for a patterned Si film, the space between the
patterned Si film units makes room to expand the
volume of Si during the lithiation process and to mini-
mize the stress generated in the Si film electrode. These
characteristics of the patterned Si film are expected to
minimize the structural damage of the Si film and
improve the electrochemical reversibility of the
electrode.
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In this article, the electrochemical properties of the
continuous and patterned Si film electrodes are exam-
ined, and the improved cycle performance of the pat-
terned electrode is discussed by observing the surface
morphologies after 10 cycles.

Experimental details
A patterned Si film was fabricated by using an expanded
metal foil (stainless steel) with lozenge-patterned holes
(THANKS-METAL, Japan) as a mask. A continuous
(conventional) Si film electrode was also fabricated for
comparison. The Si films were deposited on a Cu foil
substrate using DC magnetron sputtering systems. Prior
to the deposition, the Cu substrate was ultrasonically
cleaned and annealed in vacuum-sealed ampules at 573 K
for 30 min to remove the residual impurity gases at the
surface. The films were grown in a vacuum chamber
under a pressure of 5 × 10-3 Torr in argon atmosphere. A
cross-sectional analysis was performed to measure thick-
ness of the film with an alpha-step profiler. The thickness
of the Si film fabricated in this study was 350 nm.
Crystallinity and surface morphology of the two Si

films were investigated by means of transmission elec-
tron microscopy [TEM], X-ray diffraction [XRD], and
field emission scanning electron microscopy. Although
the stress generated during the electrochemical test was
indirectly traced by analyzing the broadness of the sub-
strate peaks, a clear distinction before and after the test
was difficult.
Electrochemical measurements were preformed in

CR2032 coin cells with the different Si film electrodes.

A metal lithium foil was used as a counter electrode.
Electrolyte was made from 1 M LiPF6 in a 1:1 (v/v) mix-
ture of ethylene carbonate and dimethyl carbonate. The
separator used was a porous polypropylene (Celgard
2400; Celgard, Charlotte, NC, USA). Galvanostatic
charge-discharge half-cell tests were performed at a cur-
rent density of 2,100 mA/g (0.5C-rate) at ambient tem-
perature. The test was conducted between the initial
OCV and 0.01 V versus Li/Li+, then between 0.01 and
1.2 V after the first cycle. Charge-discharge measure-
ments were performed with a constant current. For the
calculation of capacity, the mass of the Si electrode is
derived from its density, 2.33 g/cm2, assuming the crys-
talline structure.

Results and discussion
Scanning electron microscopy [SEM] photographs of the
continuous and patterned Si films are shown in Figures
2a and 2c, respectively. For the two Si films, energy dis-
persive spectrometry [EDS] mapping images of the Si
element are also given in Figures 2b and 2d, showing
the difference in distribution of Si. Tile-like Si films
with the lozenge shape observed in the patterned Si film
are arranged with the regular space between them.
From Figure 2c, the width [w] and height [h] of the Si
tile are about 700 μm and 270 μm, respectively, and the
Si-deposited area ratio of the patterned film is about
83% for the continuous film. These results demonstrate
that a well-patterned Si film (electrode) can be simply
fabricated by masking with an expanded metal foil.
Figure 3 shows XRD profiles of continuous and pat-

terned Si films. For comparison, the XRD result of a Cu
substrate is presented in Figure 3a. No peaks related to
Si can be found for the two films (Figures 3b, c) though
the highest-intensity peak of crystalline Si appears at 2θ
= 28°. This indicates that the Si films fabricated in this
work are amorphous. In the previous work, TEM results
of the Si film with the same thickness revealed a hollow
pattern corresponding to a disordered structure [9]. The
amorphous Si is known to be an effective structure to
obtain better electrochemical properties than the crystal-
line Si [7,11].
However, weak peaks of CuO are observed in Figures

3a and 3b. The formation of CuO can be confirmed in
the inset of Figure 3a where peaks corresponds to (111)
and (200) planes of CuO (JCPDS 80-1719), respectively.
The CuO layer seems to form on the surface of the Cu
substrate during the annealing process. The intensity of
CuO peaks decreases at the patterned Si film and almost
disappears at the continuous Si film. This is acceptable
because the Si-covered area for the continuous film is
wider than that for the patterned film.
Charge-discharge behaviors of cells with continuous and

patterned films (electrodes) are compared in Figure 4.
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Figure 1 Schematic diagrams of the structural change in Si
film electrodes during the charge-discharge (lithiation-
delithiation) process. (a) Continuous film and (b) patterned film.
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The cell test was performed at the same current density of
2,100 mA/g corresponding to 0.5C-rate. Notice that vol-
tage decreases during the charge process (lithiation). Two
voltage plateaus can be observed in each cell, and this is a
typical charge-discharge behavior of amorphous Si [12].

At the first cycle, 2,890 mAh/g of charge capacity and
2,200 mAh/g of discharge capacity were obtained from
the continuous electrode (Figure 4a), and 3,620 mAh/g
and 2,200 mAh/g capacities were obtained from the pat-
terned electrode (Figure 4b). The relatively high charge
capacity of the patterned electrode is mainly related to
an electrochemical reaction between Li and Cu oxide
layers partially exposed on the surface. It had been
already reported that the reaction occurred at a voltage
range of 1.7 V to 1.0 V and then formed LixCuO [13].
In addition to this, another reason is the solid electrolyte
interphase formation that is sensitive to the surface
morphology of the electrode because the patterned elec-
trode has a wider surface area than the continuous elec-
trode [6]. These reaction products lead to the capacity
loss at the first cycle, and thus a low coulombic effi-
ciency ((discharge capacity/charge capacity) × 100(%)) of
60% was obtained at the first cycle as shown in Figure
4b. However, the patterned electrode exhibits higher
efficiencies than those of the continuous electrode
which were obtained after the first cycle.
The cycle performances of cells with the continuous

and patterned Si electrodes are shown in Figure 5. The
charge capacity of the continuous electrode has rapidly
decreased within the second cycle. On the other hand, it
is noticeable that the patterned Si electrode exhibits a
high capacity retention (75% for the second cycle) even
until 120 cycles. It is considered that the improved cycle
performance of the patterned Si electrode is associated
with the stress dispersion in the Si film electrode during
the charge-discharge process.
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Figure 2 SEM photographs and EDS mapping images of Si film electrodes. (a, b) continuous film and (c, d) patterned film.
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Figure 3 XRD profiles of (a) Cu current collector (substrate), (b)
patterned and (c) continuous Si films. Partially magnified profile
of (a) is in the inset.
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Figure 6 shows surface morphologies of the continu-
ous and patterned Si electrodes after 10 cycles. The Si
film with severe cracks was partially detached from the
substrate in the continuous electrode. Such damage of
the film electrodes results from the compressive and
tensile stress generated by the insertion and extraction
of Li [3]. In contrast, Si tiles with the regular space still
remained without the severe damage shown in the con-
tinuous electrode. It suggests that the stress generated
in the continuous Si electrode is larger than that in the
patterned electrode.
However, it can be found that the size of the Si tile

was slightly increased after cycling (Figure 2b and 6b),
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Figure 4 Initial charge-discharge curves of cells with (a)
continuous Si electrode and (b) patterned Si electrode. Cycle
numbers are described at the top and bottom of the curves.
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Figure 5 Charge capacity vs. cycle number curves of cells with
continuous and patterned Si electrodes. The open circle denotes
the continuous Si electrode, while the closed circle denotes the
patterned Si electrode.
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Figure 6 SEM photographs of cycled Si electrodes. (a) Continuous Si electrode and (b) patterned Si electrode. EDS mapping image of the Si
element is in the inset of (b).
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and relatively small cracks were generated in the pat-
terned electrode. Unfortunately, these results indicate
that the volume change of Si was completely not rever-
sible during the repeated cycling. Therefore, it is con-
cluded that the space between tiles in the patterned Si
electrode buffers the volume change of Si during the
charge-discharge process and partially disperses the
stress generated in the Si electrode. In the next work, it
is expected that electrochemical properties of the pat-
terned electrode fabricated on a substrate without an
oxide layer will be highly improved because the adhe-
sion between a film and a substrate will be enhanced by
the surface treatment of the substrate. Because of this,
the study on a surface-etched substrate is in progress.

Conclusions
A patterned Si film (electrode) with lozenge-shaped tiles
could be successfully fabricated by masking with an
expanded metal foil, and its electrochemical properties
were compared with those of a continuous (conven-
tional) film electrode. The patterned electrode exhibits a
remarkably improved cycleability compared to the con-
tinuous electrode with 75% capacity retention after 120
cycles. After 10 cycles, the continuous Si film with
severe cracks was partially detached from the substrate,
whereas Si tiles in the patterned film still remained
without severe damage. The good electrochemical per-
formances of the patterned electrode were attributed to
the space between Si tiles that acted as a buffer against
the volume change of Si.
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