
NANO EXPRESS Open Access

A facile chemical conversion synthesis of Sb2S3
nanotubes and the visible light-driven
photocatalytic activities
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Abstract

We report a simple chemical conversion and cation exchange technique to realize the synthesis of Sb2S3
nanotubes at a low temperature of 90°C. The successful chemical conversion from ZnS nanotubes to Sb2S3 ones
benefits from the large difference in solubility between ZnS and Sb2S3. The as-grown Sb2S3 nanotubes have been
transformed from a weak crystallization to a polycrystalline structure via successive annealing. In addition to the
detailed structural, morphological, and optical investigation of the yielded Sb2S3 nanotubes before and after
annealing, we have shown high photocatalytic activities of Sb2S3 nanotubes for methyl orange degradation under
visible light irradiation. This approach offers an effective control of the composition and structure of Sb2S3
nanomaterials, facilitates the production at a relatively low reaction temperature without the need of organics,
templates, or crystal seeds, and can be extended to the synthesis of hollow structures with various compositions
and shapes for unique properties.

Keywords: Nanotubes, Chemical transformation, Cation exchange, Growth mechanism, Optical and photocatalytic
properties

Background
Since the discovery of carbon nanotubes in 1991 [1],
extensive research has been carried out on one-dimen-
sional (1D) tubular nanostructures, owing to their
unique size-dependent properties and remarkable poten-
tial applications in electronics, optoelectronics, catalysis,
biotechnology, separation, and so on [2-7]. However, the
preparation of nanotubes is relatively difficult, and fewer
synthetic techniques have been developed compared to
those for other 1D nanostructures, such as nanorods
and nanowires [8-10]. So far, different types of nano-
tubes have been prepared by various approaches includ-
ing vapor-liquid-solid, chemical vapor deposition,
template-directed synthesis, and low-dimensional sacrifi-
cial precursors [11-14]. Nevertheless, these strategies
often require high temperature, special conditions, and
tedious procedures, and most of them are complicated

and uncontrollable. Therefore, development of a facile,
versatile, and effective synthetic pathway to prepare 1D
nanotubes is very important and quite necessary. In par-
ticular, it is highly desirable to control and manipulate
the chemical compositions and structures of nanotubes.
In fact, chemical conversion and cation exchange have

been demonstrated as powerful tools to convert the che-
mical compositions of nanostructures without destroy-
ing the original morphology [15,16]. Our previous
studies on the transformation of composition in the
core/shell microspheres (from ZnO/ZnS to ZnO/Ag2S
and ZnO/CuS) [17] and in the hollow microspheres, as
well as nanotubes (from ZnS to other various metal sul-
fides) [18,19], have indicated the significance of chemical
conversion and cation exchange. Compared to other
strategies, the chemical conversion and cation exchange
have the following advantages: (1) reactions can take
place in a solution under mild conditions (low growth
temperature, without any special equipments or tem-
plates); (2) this approach is a typical one-step process,
which needs no tedious procedures or further purifica-
tion of the products; (3) the products can be produced
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on a large scale; and (4) this strategy can be developed
as a general method to fabricate functional semiconduc-
tor hollow structures with various compositions and
shapes for unique properties, which is quite important
with respect to technical applications.
As an important V-VI group binary chalcogenide, anti-

mony trisulfide (Sb2S3) with an energy bandgap varying
between 1.5 and 2.2 eV has attracted particular attention,
owing to its good photovoltaic properties, high thermo-
electric power [20], broad spectrum response, and suita-
ble valence band position [21]. This material has been
applied in various areas such as television cameras with
photoconducting targets, thermoelectric cooling devices,
electronic and optoelectronic devices, solar energy con-
version, and visible light-responsive photocatalysis
[20-26]. It has been demonstrated that the properties of
antimony trisulfide are determined predominantly by
their crystal structure, size, and morphology. Therefore,
the synthesis of Sb2S3 materials with well-controlled size
and shape is of great significance for their applications.
Up to date, a variety of 1D nanostructures of Sb2S3 such
as nanorods [27-30], nanowires [31], microtubes [32,33],
and nanoribbons [34] have already been synthesized by
various methods. Nevertheless, little has been devoted to
the development of a general and low-cost synthetic
method to fabricate Sb2S3 nanotubes without using any
templates or crystal seeds. Although as-grown Sb2S3 pre-
sents in general an amorphous structure, it can be trans-
formed in the polycrystalline phase by successive
annealing [35]. Considering the technical importance of
this material, fabrication of Sb2S3 with some inspired
structures such as a tubular structure by a convenient
and efficient method has always been a great interest.
In this paper, we have realized the first synthesis of

Sb2S3 nanotubes by conversion from ZnS nanotubes via
chemical conversion and cation exchange at a low tem-
perature of 90°C. The key point of the method is to utilize
the large difference in solubility between ZnS and Sb2S3
for the effective transformation. Structural, morphological,
and optical changes have been observed in these samples
after annealing at different temperatures in an argon
atmosphere. We have further shown high photocatalytic
activities of Sb2S3 nanotubes for methyl orange (MO)
degradation under visible light irradiation, due to the large
specific surface area and good crystallinity [36,37]. The
present technique is very convenient and efficient, free of
any organics, templates, or crystal seeds, and has been
demonstrated to control and manipulate effectively the
chemical compositions and structures of nanotubes.

Methods
Synthesis of ZnS nanotubes
The preparation details for ZnS nanotubes can be found
in our recently published papers [19]. Briefly, ZnO

nanowires were first prepared by a hydrothermal pro-
cess. As a typical synthesis process, 0.2 g ZnCl2 and
20.0 g Na2CO3 were added into a 50-mL Telfon-lined
stainless steel autoclave and filled with distilled water up
to 90% of its volume. After vigorous stirring for 30 min,
the autoclave was maintained at 140°C for 12 h, fol-
lowed by cooling down naturally to room temperature.
The synthesis of ZnO nanowires could be realized after
the product was washed and dried. Subsequently, the
as-prepared ZnO nanowires on substrates (silicon or
glass slides) were transferred to a Pyrex glass bottle con-
taining 40 mL of 0.2 M thioacetamide (TAA). The
sealed bottle was then heated to 90°C for 9 h in a con-
ventional laboratory oven to synthesize ZnS nanotubes.
The final products on the substrates were washed
repeatedly with deionized water and then dried at 60°C
before being used for the next step in the reaction and
further characterization.

Synthesis of Sb2S3 nanotubes
The synthesis of Sb2S3 nanotubes was realized by trans-
ferring the silicon or glass slides with ZnS nanotubes on
them to a Pyrex glass bottle containing 150 mM
C8H4K2O12Sb2 and 70 mM tartaric acid. During the
reaction process, the solution temperature was kept at
90°C. The final products on the substrates were washed
thoroughly using deionized water to remove any co-pre-
cipitated salts and then dried at air at 60°C. For better
crystal quality, the as-prepared Sb2S3 nanotubes were
annealed in an argon atmosphere.

Morphological and structural characterization
The morphology and structure of the samples were char-
acterized using field-emission scanning electron micro-
scopy (FE-SEM; Philips XL30FEG, FEI Co., Hillsboro,
OR, USA) with an accelerating voltage of 5 kV and a
high-resolution transmission electron microscopy
(HRTEM; JEOL JEM-2100 F, JEOL Ltd., Akishima,
Tokyo, Japan). Selected area electron diffraction (SAED)
and energy dispersive X-ray (EDX) microanalysis were
also performed during the TEM and SEM observations.
X-ray diffraction (XRD) was carried out on a diffract-
ometer (D/max-2200/PC, Rigaku Corporation, Tokyo,
Japan) equipped with a high intensity Cu Ka radiation (l
= 1.5418 Å). Raman spectra were measured at room tem-
perature on a Jobin Yvon LabRAM HR 800 UV micro-
Raman/PL system (HORIBA Jobin Yvon Inc., Edison, NJ,
USA)at a backscattering configuration under the excita-
tion of a He-Cd laser (325.0 nm) for ZnS nanotubes and
a Ar+ laser (514.5 nm) for Sb2S3 nanotubes.

Photocatalytic activity measurements
The photocatalytic activities under visible light were
monitored through the photodegradation of MO. Visible

Shuai and Shen Nanoscale Research Letters 2012, 7:199
http://www.nanoscalereslett.com/content/7/1/199

Page 2 of 8



light irradiation was carried out using a 500-W Xe lamp
with a 420-nm UV cutoff filter, which was surrounded
by a quartz jacket to allow for water cooling. Photocata-
lyst powder (30 mg) was added into 80 mL of aqueous
MO (20 mg L-1) solution and magnetically stirred in the
dark for 30 min to reach the adsorption-desorption
equilibrium before visible light illumination. The absor-
bance of the corresponding target organics was moni-
tored by measuring with a UV-vis spectrophotometer
(PerkinElmer Lambda 950, PerkinElmer, Waltham, MA,
USA).

Results and discussions
In our experiments, we start from the ZnO nanowires
which were prepared by a hydrothermal process [19].
We then transfer the ZnO nanowires into a solution
containing 0.2 M TAA to convert the ZnO nanowires
into ZnS nanotubes. The TAA solution provides sulfide
ions to react with zinc ions dissolved from the ZnO
nanowires to form ZnO/ZnS core/shell structures.
When prolonging the sulfidation time to 9 h under
hydrothermal conditions, all ZnO nanowires can change
into ZnS nanotubes due to the Kirkendall effect, which
normally refers to comparative diffusive migrations
among different atomic species in metals and/or alloys
under thermally activated conditions [38]. Figure 1a
shows the FE-SEM image of the obtained ZnS nano-
tubes. One can see that some of the shells have an irre-
gular open tip, demonstrating the hollow nature of the
prepared nanotubes. Further evidence for the hollow
structure can be found from the TEM observation. Fig-
ure 1b displays the TEM image of the obtained ZnS
nanotubes. The strong contrast difference in the nano-
tubes with a light inner center and a relatively dark edge
confirms that the yielded ZnS nanotubes are all hollow.
Figure 1c presents a HRTEM image taken on the edge
of the ZnS nanotube, which clearly exhibits that the
shell is composed of ZnS nanocrystalline grains with a
polycrystalline nature. The inset of Figure 1c is the cor-
responding ring-like SAED pattern without a spotted
pattern taken on a single nanotube, also providing evi-
dence for the polycrystalline nature of ZnS nanotubes.
The composition of the ZnS nanotubes can be easily
identified by the EDX (Figure 1d) and XRD (Figure 1e)
spectra. Figure 1f shows the room-temperature Raman
spectrum of the ZnS nanotubes. The observation of
multiple resonant Raman peaks indicates that the
yielded ZnS nanotubes possess good optical quality [39].
The main attempts in the present work are to synthe-

size Sb2S3 nanotubes and to investigate their optical
properties and photocatalytic performances. To make
the conversion of ZnS nanotubes to Sb2S3 ones, we
transfer the substrates with ZnS nanotubes on them
into 40 mL of 150 mM C8H4K2O12Sb2 and 70 mM

tartaric acid aqueous solution. A series of time-depen-
dent experiments were conducted to track the formation
process of Sb2S3 tubular structures, as shown in Figure
2. Under the reaction time of 1 h, some Sb2S3 nanopar-
ticles on the ZnS nanotubes were observed because ion
exchange happens as Sb3+ reacts with S2- slowly dis-
solved from the surface of ZnS nanotubes to form initial
Sb2S3 shells, as depicted in Figure 2a. After another 2-h
reaction, more Sb2S3 nanoparticles piled up on the
initial Sb2S3 shells (Figure 2b). When the reaction time
reached to 8 h, large numbers of Sb2S3 nanoparticles
were produced (Figure 2c). When further prolonging
the reaction time to 16 h, uniform Sb2S3 nanotubes of
large quantities with diameters of about 70 nm were
fully converted from ZnS ones (Figure 2d).
The corresponding EDX spectra in Figures 2a’,b’,c’,d’

give clear evidence for the FE-SEM observation of the
samples obtained through various reaction times. From
Figure 2a’, we can observe the successful incorporation
of the Sb element into the ZnS nanotubes in the com-
positional information. The signal of Si originates from
the substrate. With the increase of the reaction time,
the Sb/Zn stoichiometric ratio becomes higher and
higher due to the fact that more and more Zn atoms
were replaced by Sb atoms with the reaction processing,
as shown in Figures 2b’,c’. Further chemical reaction
will yield pure Sb2S3 nanotubes, which can be unam-
biguously confirmed by the EDX spectrum in Figure 2d’.
There are only Sb, S, and Si elements without any Zn
element.
According to the experimental observation described

above, the whole process can be described as follows:
Once the obtained ZnS nanotubes were transferred into
C8H4K2O12Sb2 solution, cation exchange began at the
interfaces between the ZnS nanotube surfaces and solu-
tion. With the increase in the reaction time, Zn2+ was
gradually substituted by Sb3+, resulting in the synthesis
of Sb2S3 nanotubes. The driving force for the cation
exchange is provided by the large difference in solubility
between ZnS and Sb2S3 (solubility product constant
(Ksp) of ZnS is 2.93 × 10-25, whereas Ksp of Sb2S3 is 1.5
× 10-93) [40]. The above conversion mechanism reveals
that the ZnS nanotubes can act as both reactants and
templates during the cation-exchange process. There-
fore, a general, facile, and economic method has been
proposed and realized to synthesize Sb2S3 nanotubes,
and this strategy can control and manipulate effectively
the chemical compositions and structures of nanotubes.
Furthermore, we can extend this chemical conversion
approach to the synthesis of other metal sulfide nano-
tubes under the condition that those yielded metal sul-
fides have lower Ksp values than ZnS. In fact, it is
because of the large Ksp in ZnS that we choose ZnS
nanotubes as the reactants and templates to synthesize
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various metal sulfide nanotubes, like Ag2S, CuS, PbS,
Bi2S3 [19], and Sb2S3 nanotubes in the present paper. It
is a convenient one-pot method without using any
organics, templates, or crystal seeds and has great
potential in industrialized high-volume production.

The annealing treatment exerts an important influence
on the morphology and structure of the Sb2S3 nano-
tubes. Figure 3a presents the SEM image of Sb2S3 nano-
tubes fabricated at 90°C for 16 h before annealing,
clearly showing that these nanotubes exhibit rough
structures with myriad Sb2S3 nanoparticles. When the
as-prepared Sb2S3 16-h nanotubes were annealed in
argon atmosphere under 200°C for 1 h, the nanotubes
were gained with Sb2S3 nanoparticles agglomerating on
the surface (Figure 3b), and compact and uniform nano-
tubes were observed for Sb2S3 16-h nanotubes annealed
at higher temperature of 250°C (Figure 3c). Further
increasing the annealing temperature to 400°C, we were
able to realize more uniform and slippery Sb2S3 nano-
tubes, as illustrated in Figure 3d.
We have investigated the crystal structures of the

Sb2S3 nanotubes under different annealing temperatures
by TEM and HRTEM. Figure 4a shows the TEM image
of as-prepared Sb2S3 nanotubes obtained at 16 h before
annealing. One can notice that the outer layers were
composed of numerous Sb2S3 nanoparticles with a
mean size of 18 nm. As the Sb2S3 16-h nanotubes were
annealed in argon atmosphere at 200°C for 1 h, the
Sb2S3 nanoparticles on the surface of nanotubes became
coacervated (Figure 4b), and compact and uniform
nanotubes were formed at a higher annealing tempera-
ture of 250°C (Figure 4c). Figure 4d presents the TEM
image of the Sb2S3 16-h nanotubes with the annealing
temperature increased to 400°C, where the Sb2S3 16-h
nanotubes appear to be smooth on the surface, and the
diameter of the nanotubes is about 70 nm with a shell
as thick as 18 to 21 nm.
HRTEM observation can give deep insight into the

structural features of the Sb2S3 nanotubes before and
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Figure 1 Images of ZnS nanotubes with their corresponding
spectra. (a) FE-SEM and (b) TEM images of ZnS nanotubes. (c)
HRTEM image of a ZnS nanotube shell, together with the
corresponding SAED pattern shown in the inset. The corresponding
(d) EDX, (e) XRD, and (f) room-temperature Raman spectra of ZnS
nanotubes.
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Figure 2 FE-SEM images of Sb2S3 nanotubes and their corresponding EDX spectra with different reaction times. FE-SEM images of Sb2S3
nanotubes with different reaction times (a) 1 h, (b) 3 h, (c) 8 h, and (d) 16 h. (a’ to d’) The corresponding EDX of Sb2S3 nanotubes with different
reaction times.

Shuai and Shen Nanoscale Research Letters 2012, 7:199
http://www.nanoscalereslett.com/content/7/1/199

Page 4 of 8



after annealing. Figure 4e is a representative HRTEM
image taken on the edge of the obtained Sb2S3 16-h
nanotube before annealing (Figure 4a). The lattice
fringes are highly disordered and ambiguous, revealing
that the un-annealed Sb2S3 16-h nanotubes have poor
crystallization [34]. The corresponding SAED pattern of
the nanotube (inset of Figure 4e) exhibits weak ring dif-
fractions, indicating slight crystallization. Figure 4f pre-
sents a HRTEM image recorded from a certain Sb2S3
16-h nanotube after annealing at 400°C (Figure 4d); only
the polycrystalline nature of Sb2S3 nanotubes can be
observed. The clearly observed crystal lattice fringes
demonstrate that the nanotubes are highly crystallized
and free from dislocation and stacking faults [24]. The
corresponding SAED pattern shown in the inset of Fig-
ure 4f having characteristic ring diffractions also con-
firms the polycrystalline feature of the nanotubes after
annealing.
The effect of argon annealing treatment on the crys-

tallographic properties of Sb2S3 nanotubes has been
further revealed by the XRD patterns for Sb2S3 16-h
nanotubes annealed at different temperatures. As shown
in Figure 5a, for the sample before annealing, the broad-
ening and low intensity of the diffraction peaks indicate
weak crystallization of the sample [37]. When annealed
at 200°C for 1 h, indistinct diffraction peaks of the sam-
ple appeared. Peaks become sharper as the annealing
temperature increases to 250°C, as can be seen in the
same figure, while the intensity and shape of the diffrac-
tion peaks reveal that the sample is not perfectly crystal-
lized [41]. Upon increasing the annealing temperature to
400°C, the peak intensities steadily become stronger,
showing an enhancement of the crystallization. All of

the clear diffraction peaks can be indexed to an orthor-
hombic phase of Sb2S3 (JCPDS Files, No. 06-0474). The
shape of the diffraction peaks demonstrates that the
products should be well crystallized [41]. No other
impurities were found in the samples, indicating that
the products are pure stibnite Sb2S3.
To confirm the transition from a weak crystallization

to a polycrystalline structure, Raman spectra have also
been measured at different annealing temperatures. The
results are summarized in Figure 5b. For Sb2S3 16-h
nanotubes before annealing, the spectrum is very broad,
indicating poor crystallinity [35]. The sample after
annealing in argon at 200°C for 1 h presents similar
spectrum to the un-annealed sample but with a single
peak. At higher temperatures of 250°C and 400°C, sev-
eral sharp peaks appear, which correspond to the
Raman spectra of crystalline Sb2S3 (stibnite structure)
[24,42]. The band centered at 170 cm-1 can be assigned
to the vibration of Sb-Sb bonds in S2Sb-SbS2 structural
units [43]. The presence of peaks at 189 and 252 cm-1

suggests the formation of a good crystalline product
[42]. The peak at 279 cm-1 is in accordance with the
symmetric vibrations of SbS3 pyramidal units having C3v

symmetry [44,45], and the peak at 450 cm-1, with the S-
S vibrations [44] or the symmetric stretching of the Sb-
S-S-Sb structural units [45]. These results agree well

Figure 3 FE-SEM images of the Sb2S3 nanotubes under
different annealing temperatures. (a) as-prepared at 90°C for 16
h before annealing; annealed in argon atmosphere at (b) 200°C, (c)
250°C, and (d) 400°C for 1 h, respectively.

Figure 4 TEM and HRTEM images of Sb2S3 16-h nanotubes.
TEM images of the Sb2S3 16-h nanotubes (a) just grown and
annealed in argon at (b) 200°C, (c) 250°C, and (d) 400°C for 1 h.
HRTEM images of the Sb2S3 16-h nanotubes (e) just grown and (f)
annealed at 400°C, together with the corresponding SAED patterns
shown in the insets.
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with the XRD observation in Figure 5a. Our Sb2S3 nano-
tubes will yield a poor morphology and crystal quality
when annealed above 400°C, which can be attributed to
a sulfur deficiency as a consequence of sulfur loss dur-
ing the high-temperature annealing without sulfur vapor
[35].
To characterize the photocatalytic efficiency of Sb2S3

nanotubes, we employ MO as a model pollutant. Figure
6 shows photocatalytic MO degradation over the Sb2S3
16-h nanotubes before and after annealing at 400°C
under visible light (C0 and C are the equilibrium con-
centration of MO before and after visible light irradia-
tion, respectively), from which one can see that our as-
prepared Sb2S3 16-h nanotubes show great visible light-
induced photocatalytic activities and that the degrada-
tion percentage of MO increases rapidly with increasing
time. The high photodegradation rate of MO (driven by
visible light) can be attributed to the large specific sur-
face area of nanotubes since the enlarged surface helps
to increase the photocatalytic reaction sites and promote
the efficiency of the electron-hole separation [36].
Furthermore, we are able to achieve significant improve-
ment on the photocatalysis activities in the Sb2S3 16-h
nanotubes calcined in argon at 400°C, and the degrada-
tion percentage is nearly complete in a time period of
120 min, which indicates that the crystalline phase
should be another main factor influencing the photoca-
talytic activities. Therefore, the large surface area of the
Sb2S3 nanotubes was not the only factor responsible for
the high photocatalytic activities, and the good crystalli-
nity could also be critical, which may be due to the fact
that the better the crystallinity, the fewer lattice defects

act as recombination centers for photoinduced electrons
and holes [37]. As far as we know, the degradation effi-
ciency of our Sb2S3 nanotubes on MO is comparable
with other oxides and sulfides [21,24,25,46].

Conclusions
In summary, Sb2S3 nanotubes have been successfully
synthesized by chemical conversion and cation exchange
at a low temperature of 90°C. The conversion mechan-
ism of the Sb2S3 nanotubes from ZnS nanotubes is due
to the large difference in solubility between ZnS and
Sb2S3. Samples have been annealed at different tempera-
tures in the range of 200°C to 400°C in an argon atmo-
sphere. The morphological, structural, and optical
characteristics of the yielded Sb2S3 nanotubes before
and after annealing were characterized by SEM, TEM,
XRD, and Raman spectra in detail. It is revealed that the
synthesized Sb2S3 nanotubes can be transformed from a
weak crystallization to a polycrystalline structure
through the successive annealing treatment. Further-
more, the Sb2S3 nanotubes exhibit high photocatalytic
activities for MO degradation under visible light irradia-
tion as a result of large specific surface area and good
crystallinity. The present strategy is a very convenient
and efficient method to control and manipulate effec-
tively the chemical composition and structure of nano-
materials. Although the present work focuses on Sb2S3
nanotubes, other metal sulfide hollow structures are also
expected to be realized based on ZnS hollow structures
with the corresponding shapes as the precursors during
the chemical conversion process. We have therefore
expected that the general and economic technique of
material synthesis demonstrated in this article can be
used in a broad range of applications to fabricate inno-
vative micro- and nanostructured semiconductor
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materials with different compositions and geometries
having unique properties.
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