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Abstract

The purpose of this study was to evaluate dendrimer-entrapped gold nanoparticles [Au DENPs] as a molecular
imaging [MI] probe for computed tomography [CT]. Au DENPs were prepared by complexing AuCl4

- ions with
amine-terminated generation 5 poly(amidoamine) [G5.NH2] dendrimers. Resulting particles were sized using
transmission electron microscopy. Serial dilutions (0.001 to 0.1 M) of either Au DENPs or iohexol were scanned by
CT in vitro. Based on these results, Au DENPs were injected into mice, either subcutaneously (10 μL, 0.007 to 0.02
M) or intravenously (300 μL, 0.2 M), after which the mice were imaged by micro-CT or a standard mammography
unit. Au DENPs prepared using G5.NH2 dendrimers as templates are quite uniform and have a size range of 2 to 4
nm. At Au concentrations above 0.01 M, the CT value of Au DENPs was higher than that of iohexol. A 10-μL
subcutaneous dose of Au DENPs with [Au] ≥ 0.009 M could be detected by micro-CT. The vascular system could
be imaged 5 and 20 min after injection of Au DENPs into the tail vein, and the urinary system could be imaged
after 60 min. At comparable time points, the vascular system could not be imaged using iohexol, and the urinary
system was imaged only indistinctly. Findings from this study suggested that Au DENPs prepared using G5.NH2

dendrimers as templates have good X-ray attenuation and a substantial circulation time. As their abundant surface
amine groups have the ability to bind to a range of biological molecules, Au DENPs have the potential to be a
useful MI probe for CT.

Introduction
Molecular imaging [MI] combines conventional imaging
technologies with MI probes, which are designed to
detect aspects of biochemistry and cell biology that
underlie disease progression and treatment response
[1-5]. MI includes optical imaging, nuclear-based ima-
ging (both positron-emission tomography and single
photon emission tomography), and magnetic resonance
imaging. Due to the difficulty of designing suitable con-
trast agents and probes, the use of X-ray computed
tomography [CT] in MI has been limited. However, CT
affords better spatial and density resolutions than other
imaging modalities. These advantages become

particularly apparent when CT is used to diagnose dis-
eases in the thorax, such as lung cancer. There thus
exists an urgent need to enhance the capabilities of CT
by developing suitable MI probes.
Gold nanoparticles [AuNPs] have seen increasing use

recently in cancer imaging and treatment [6-18] as they
offer several advantages over conventional, iodine-based
X-ray or CT contrast agents. First, because of its higher
atomic number and electron density, gold has a higher
X-ray absorption coefficient than iodine, endowing it in
principle with a greater ability to enhance contrast on
CT [19]. AuNPs also appear to be biocompatible
[20,21]. It is relatively easy to modify the surface of
AuNPs with functional groups such as targeting mole-
cules or specific biomarkers, endowing the resulting par-
ticles with characteristics favorable for a range of MI
applications [22-24]. Finally, proper treatment of AuNPs
can increase their circulation time in the cardiovascular
system [CVS] by allowing them to avoid removal by the
reticuloendothelial system [RES] [22,25,26]. This is
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particularly advantageous when treating tumors, whose
combination of leaky vasculature and poor lymphatic
drainage can result in what is known as the enhanced
permeation and retention [EPR] effect. Extended circula-
tion times can exploit the EPR effect to enhance trans-
port of AuNPs to the tumor site, while in parallel, the
particles’ bound targeting molecules increase the rate of
endocytotic uptake [22,25].
Dendrimers are a class of highly branched, synthetic,

and spherical macromolecules comprising a wide array
of types, chemical structures, and functional groups
[27]. Two types are commercially available: the poly
(amidoamine) [PAMAM] and poly(propylene imine)
dendrimers. Both types can be synthesized to different
generations, each generation increasing proportionally in
size and molecular weight. Thus, for example, genera-
tion 4 [G4] PAMAM dendrimers are approximately
twice the size of generation 3 [G3]. These compounds
have several advantages for clinical use. Not only are
they highly soluble in aqueous solutions, but also their
size can be precisely controlled. In addition, the terminal
amine groups can easily be acetylated to shield their
positive potential, thereby avoiding nonspecific binding
and toxicity [28,29]. Dendrimers also possess a hollow
interior that can be used to trap AuNPs as well as a
substantial number of available surface amino groups
that can be modified by a range of targeting molecules
[30-32]. Dendrimers thus have a considerable potential
as a nanoplatform to create multifunctional, dendrimer-
entrapped gold nanoparticles [Au DENPs] [33,34],
which have the additional benefit of being stable not
only in water, phosphate-buffered saline [PBS], and cell
culture medium, but also at different temperatures and
pH conditions [35]. In this study, we synthesized and
characterized Au DENPs and performed a preliminary
evaluation of their ability to attenuate X-rays in vitro
and their in vivo use as a MI probe for CT.

Materials and methods
Synthesis and characterization of Au DENPs
Generation 5 PAMAM [G5.NH2] dendrimers with a
polydispersity index less than 1.08 were purchased from
Dendritech (Midland, MI, USA). All other chemicals
were obtained from Aldrich (St. Louis, MO, USA) and
used as received. The water used in all the experiments
was purified using a Milli-Q Plus 185 water purification
system (Millipore, Bedford, MA, USA) with a resistivity
higher than 18 MΩ cm. Regenerated cellulose dialysis
membranes (molecular weight cutoff, 10, 000) were
acquired from Fisher (Waltham, MA, USA).
Au DENPs were synthesized using previously reported

methods [30,35,36] with minor variations. Briefly, the
particles were prepared using sodium borohydride
reduction chemistry, with gold salt/dendrimer molar

ratios of 51.2:1 and 200:1. The formed Au DENPs were
denoted as {(Au0)51.2-G5.NH2} DENPs and {(Au0)200-G5.
NH2} DENPs. For intravenous injection, {(Au0)51.2-G5.
NH2} DENPs were further acetylated to neutralize the
surface charge of the particles to form {(Au0)51.2-G5.
NHAc} DENPs. The characterization of {(Au0)51.2-G5.
NH2} and {(Au0)51.2-G5.NHAc} DENPs has been
reported elsewhere [36]. To determine the size distribu-
tion of the {(Au0)200-G5.NH2} DENPs, a 1 mg/mL aqu-
eous solution of each sample was dropped onto a
carbon-coated copper grid and allowed to air-dry. The
grids were then viewed by transmission electron micro-
scopy [TEM] using a JEOL 2010F analytical electron
microscope (JEOL, Tokyo, Japan) operating at 200 kV.
For each sample, 300 Au DENPs were randomly
selected for size analysis, which was performed in paral-
lel by three investigators. The size-distribution histo-
gram was produced using ImageJ software (http://rsb.
info.nih.gov/ij/download.html).

In vitro CT imaging and CT value measurement
Fifteen serial dilutions of either {(Au0)200-G5.NH2}
DENPs or iohexol (Omnipaque®, 300 mg iodine per
mL, GE Healthcare, Milwaukee, WI, USA), ranging from
0.001 to 0.1 M of [Au] or [I], were prepared in 1.5-mL
microcentrifuge tubes and placed in a self-designed
scanning holder. The tubes were then scanned using a
64-row multidetector CT system (LightSpeed VCT, GE
Medical Systems, Milwaukee, WI, USA) with the follow-
ing parameters: tube voltage, 120 kV; tube current, 50
mA; slice thickness, 0.625 mm; slice space, 0; scan field
of view, 25 cm; display field of view, 6 cm; matrix, 512
× 512. Each concentration of either {(Au0)200-G5.NH2}
DENPs or iohexol was scanned three times, with a 24-h
interval between any two scans.
Images were reconstructed, and CT values measured,

using a GE imaging workstation (Advantage Worksta-
tion 4.3, GE Medical Systems, Milwaukee, WI, USA).
Images were reconstructed in the axial plane, after
which a 20-mm2 circle was laid over the center of each
image to define the region of interest for the measure-
ment of CT value. CT values were calculated based on
three scans of each sample, each performed by a differ-
ent investigator, and the data were presented as mean ±
standard deviation.

In vivo CT imaging
The institutional animal care committee of Shanghai
Jiao Tong University approved all animal experiments.
BALB/c mice (20 to 25 g, Shanghai Laboratory Animal
Center) were anesthetized by intraperitoneal injection of
3% sodium pentobarbital (35 mg/kg). The mice were
scanned using a micro-CT imaging system (eXplore
Locus, GE Healthcare, London, Ontario, Canada) set to
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the following parameters: tube voltage, 80 kV; tube cur-
rent, 450 μA; exposure time, 400 ms; slice thickness, 45
μm; slice space, 0; scan field of view, 45 mm × 80 mm;
effective pixel size, 0.046 mm. Images were recon-
structed on a micro-CT imaging workstation (GEHC
microView, GE Healthcare, London, Ontario, Canada)
using the following parameters: voxel, 45 μm × 45 μm ×
45 μm; display field of view, 10 to 25 mm.
To test the performance of Au DENPs as a CT MI

agent, a 10-μL aliquot of {(Au0)200-G5.NH2} DENPs
with [Au] of 0.007, 0.009, 0.01, or 0.02 M was subcuta-
neously injected into the back of the experimental mice
while the control mice were injected with an equal
volume of PBS (pH 7.4). These Au DENP concentra-
tions were chosen on the basis of both the CT value of
the soft tissue area in the uninjected mice and the pre-
viously derived CT value measurements of Au DENP
solutions alone. After injection, micro-CT scans and
image reconstruction were carried out as described
above. Each experiment was carried out three times.

In vivo dynamic digital X-ray photography
Dynamic digital X-ray photography was carried out
using a mammography system (Senographe DS, GE
Medical Systems, Milwaukee, WI, USA) set to the fol-
lowing parameters: tube voltage, 22 kV; tube current, 8
mA; exposure time, 400 ms. The anesthetized mice were
imaged before injection and then 5, 20, and 60 min after
injection of either Au DENPs or iohexol. The acetylated
{(Au0)51.2-G5.NHAc} DENPs (300 μL, [Au] = 0.2 M),

300 mg/mL iohexol, or PBS were injected into the tail
vein at a flow rate of 300 μL/min. Images were inter-
preted on a picture archiving and communication sys-
tem monitor (Pathspeed, GE Medical Systems
Integrated Imaging Solutions, Mt. Prospect, IL, USA)
after adjustment of the optimal window settings, and
then analyzed. This part of the study was performed by
two investigators in consensus.

Results
Synthesis and characterization of Au DENPs
Figure 1 shows a typical TEM image of the synthesized
Au DENPs prepared with a gold salt/dendrimer molar
ratio of 200:1. The size of the {(Au0)200-G5.NH2} DENPs
was estimated to be 4.0 ± 0.9 nm. The size-distribution
histogram (Figure 2) shows that the particles were rela-
tively uniform in size, forming a normal distribution.

In vitro CT imaging and CT value measurement
The reconstructed CT images obtained by scanning var-
ious concentrations of either {(Au0)200-G5.NH2} DENP
or iohexol solutions are shown in Figure 3. CT values
(in Hounsfield units [HU]) derived from these scans
(Table 1) were used to construct the concentration-CT
value curves shown in Figure 4. These showed, first,
that at a concentration of 0.01 M or less, X-ray attenua-
tion by Au DENPs was slightly less than that observed
with an iohexol solution containing the same concentra-
tion of iodine. However, these differences were small,
within 6 HU. In contrast, as the concentration was

Figure 1 TEM images of {(Au0)200-G5.NH2} DENPs.
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increased above 0.01 M, X-ray attenuation by Au
DENPs became progressively greater than that of the
corresponding iohexol solution.

In vivo CT imaging
Figure 5 shows that {(Au0)200-G5.NH2} DENPs ≥ 0.009
M could be detected by micro-CT imaging after being
injected subcutaneously into the dorsum of the mice
[35]. After injection, the Au DENPs tended to become
distributed as a short segment in the interspace between
the skin and the subcutaneous soft tissue.

Dynamic digital X-ray photography
At the 5- and 20-min time points after injection of
{(Au0)51.2-G5.NHAc} DENPs, the vascular system of the
mice was visible on CT (Figure 6I-b, 6I-c), with the
heart, renal vein, main portal vein, and branches of the

portal vein each clearly evident. The urinary system
could be distinguished at the 60-min time point, with
the ureter and urinary bladder defined clearly. In con-
trast, injected iohexol was unable to image the vascular
system. At the 5- and 20-min time points after iohexol
injection, the urinary system was imaged only vaguely,
and after 60 min, only the urinary bladder was imaged.
Together, these findings indicated that Au DENPs
remained in the vascular system longer than iohexol and
provided superior imaging enhancement.

Discussion
In this study, we compared the ability of Au DENPs and
iohexol to attenuate X-rays in vivo and in vitro as well
as their ability to persist in the circulation after intrave-
nous injection. We found a normal {(Au0)200-G5.NH2}
DENP size distribution around 4.0 ± 0.9 nm. The CT

Figure 2 Size-distribution histogram of {(Au0)200-G5.NH2} DENPs.

Figure 3 Axial CT images. {(Au0)200-G5.NH2} DENPs (a) and iohexol (b) at a range of concentrations in 1.5-mL microcentrifuge tubes.
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value of {(Au0)200-G5.NH2} DENPs exceeded that of
iohexol at Au concentrations above 0.01 M. {(Au0)200-
G5.NH2} DENPs ([Au] ≥ 0.009 M, 10 μL) were detect-
able by micro-CT after subcutaneous injection. The vas-
cular system could be imaged 5 and 20 min following
the injection of {(Au0)51.2-G5.NHAc} DENPs into the
tail vein, and the urinary system could be imaged after
60 min.
AuNPs hold a considerable promise as CT contrast

agents for blood pool imaging because AuNPs persist
longer in the circulation and exhibit a five- to seven fold
higher attenuation of X-rays as compared with iodine-

based agents [6,26,37]. According to the Lambert-Beer
law [38], the relationship among an input X-ray flux I0, a
tissue matrix of thickness T with linear attenuation coef-
ficient μm, and the transmitted flux Im is described by the
formula Im = I0·e

-μmT. When both tissue and contrast
agent are present, the flux Ic that passes through a
scanned section of thickness t is I0·e

-μmT-t·e-μct, or Im·e
-

(μc-μm)t, where μc is the linear attenuation coefficient of
the contrast agent. The difference in the signal between
the surrounding matrix and the feature defined by the
contrast agent can then be calculated as C = (Im - Ic)/Im
= 1 - e-(μc-μm)t. Thus, the difference in signal intensity
induced by a contrast agent is introduced depending only
on the thickness of the contrast agent and the difference
in the linear attenuation coefficients of the contrast agent
and the matrix. For this reason, the attenuation coeffi-
cient of a given contrast agent is one of the most impor-
tant factors that determine its CT imaging efficiency.
Comparison of the concentration-versus-CT value

curves of {(Au0)200-G5.NH2} DENPs and iohexol indi-
cated that increasing the molar concentration of either
element led to an increase in its attenuation coefficient.
This was likely due to a concentration-dependent effect
caused by the change in mass ratio between water mole-
cules and either [Au] or [I]. The CT value of Au DENPs
indicated that they had the superior ability to attenuate
X-rays. Together, these results indicated that Au DENPs
had a significant potential for use in CT MI based on
their ability to enhance contrast. To further explore the
feasibility of using Au DENPs in CT MI, we used {(Au0)
200-G5.NH2} DENP solutions for micro-CT imaging and
{(Au0)51.2-G5.NHAc} DENPs for dynamic digital X-ray
photography in vivo. At concentrations above 0.009 M,
Au DENPs had a much higher attenuation coefficient

Table 1 CT values of Au DENPs and iohexol solutions.

Concentration (M) CT value (HU)

Au DENPs Iohexol

0.001 0.9 ± 1.9 5.1 ± 2.8

0.002 4.2 ± 2.3 10.3 ± 2.8

0.003 11.6 ± 2.1 16.3 ± 1.3

0.004 14.9 ± 1.4 20.8 ± 1.5

0.005 20.1 ± 2.2 26.8 ± 1.6

0.006 23.3 ± 1.4 31.2 ± 1.4

0.007 33.7 ± 1.5 35.6 ± 2.3

0.008 35.8 ± 1.9 40.1 ± 2.2

0.009 39.2 ± 2.9 44.9 ± 2.3

0.01 42.3 ± 8.7 48.3 ± 2.2

0.02 76.3 ± 5.8 69.1 ± 3.7

0.04 159.7 ± 18.7 158.6 ± 10.2

0.06 238.1 ± 15.6 180.7 ± 12.5

0.08 325.3 ± 23.3 233.9 ± 18.2

0.1 546.7 ± 27.1 286.5 ± 16.7

CT, computed tomography; Au DENPs, dendrimer-entrapped gold
nanoparticles.

Figure 4 Concentration-CT value curves of {(Au0)200-G5.NH2} DENPs and iohexol.
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Figure 5 Micro-CT images of the experimental mice. The mice were injected subcutaneously with 10 μL {(Au0)200-G5.NH2} DENPs at [Au] of
0.007 (a), 0.009 (b), 0.01 (c), and 0.02 M (d). The white circle in (a) indicates the injection site. Arrows in the remaining panels show where Au
DENPs have become distributed as a short segment in the interspace between the skin and the subcutaneous soft tissue. The mean CT values
at the injection region were 31.57 (a), 41.23 (b), 48.56 (c), and 75.76 HU (d).

Figure 6 Planar projection images after intravenous injection of {(Au0)51.2-G5.NHAc} DENPs or iohexol. Rows I, II, and III contain images
obtained after injection of the Au DENPs, iohexol, and PBS, respectively. In each row, image (a) is the pre-contrast image, (b) was taken 5 min
after contrast injection, (c) at the 20-min, and (d) at 60 min after contrast injection. The following structures could be clearly distinguished 5 min
after Au DENP injection (I-b): the heart (arrow), renal vein (oval arrow), main portal vein (arrow head), and branches of the portal vein (diamond
arrow). At 20 min (I-c), the renal vein (oval arrow), main portal vein (arrow head), and branches of the portal vein (diamond arrow) remained
distinct. Sixty minutes after Au DENP injection (I-d), the vascular system could no longer be visualized, but the urinary system, including the
ureter (open arrow) and the urinary bladder (open arrow head), could be seen distinctly. After iohexol injection (II), the vascular system of the
experimental mice could not be imaged. The urinary system began to be imaged 5 min after iohexol injection (II-b), and after 60 min (II-c), only
the urinary bladder was defined.
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than the parenchyma, allowing very low-dose amounts
of Au DENPs to be visible within the parenchyma on
the CT image. We utilized acetylated {(Au0)51.2-G5.
NHAc} DENPs for intravenous injection because acety-
lation of the terminal amines of Au DENPs can signifi-
cantly improve their biocompatibility by avoiding the
amine-induced toxicity that can arise at high concentra-
tions [28,30,35,36]. Noting that although {(Au0)200-G5.
NH2} DENPs are stable at PBS and cell culture medium
[35], acetylation of {(Au0)200-G5.NH2} DENPs cannot
generate stable {(Au0)200-G5.NHAc} DENPs. This is
because the {(Au0)200-G5.NH2} DENPs have a relatively
larger size (4.0 nm) when compared with {(Au0)51.2-G5.
NH2} (2.1 nm) [36]. After acetylation to transfer dendri-
mer terminal amine groups to acetamide groups, the
dendrimer tertiary amines cannot stabilize the larger Au
DENPs entrapped within the dendrimers. The results
obtained using both {(Au0)200-G5.NH2} and {(Au0)51.2-
G5.NHAc} DENPs are comparable in terms of X-ray
attenuation intensity since Au DENPs prepared using
different gold salt/dendrimer molar ratios with a size
range of 2 to 4 nm display similar X-ray attenuation at
similar Au concentration [35].
Effective MI probes must have a sufficient half-life in

the vasculature as enough of the agent must be trans-
ported to the target site to allow data collection [25,39].
This is especially true when MI agents are used for
tumor diagnosis. Tumor vessel walls are incomplete and
fragile, containing large gaps between the endothelial
cells and the basement membranes [40]. This makes
tumor neo-vessels highly permeable, allowing contrast
agents to diffuse freely from the vasculature into the
interstitial space. However, the half-life of a nanoparticle
contrast agent is also determined by its size [27,41,42].
Molecular probes that are less than 3 nm in diameter,
such as G1 or G2 dendrimers, leak easily across vessel
walls into the surrounding tissue. Larger particles,
between 3 and 5 nm in diameter, such as G3 or G4 den-
drimers, are quickly excreted through the kidney, mak-
ing them potentially useful as functional renal contrast
agents. Agents between 5 and 8 nm diameter, such as
G5 or G6 dendrimers, are retained in the circulation
and are thus best suited for use as blood pool contrast
agents or MI probes. However, when the diameter
exceeds 20 nm, the agents are easily taken up by the
RES within the liver and spleen.
In view of the previous considerations, and as the

objective of this study was to produce a probe with a
maximum half-life in vivo, we used G5.NH2 dendrimers
as templates to prepare Au DENPs. The images
obtained after injection of Au DENPs or iohexol indi-
cate that Au DENPs remained in the circulation longer
than iohexol.

Previous studies have shown that the entrapment of
AuNPs within dendrimer templates does not influence
the surface properties of the dendrimers [35]. Thus, the
Au DENPs we synthesized would be expected to retain
the native ability of the PAMAM dendrimer, allowing
effective chemical modification with biologically active
molecules [30].
Although the current results are promising, further

experimental studies will be needed to ensure that these
Au DENPs are effective and safe for clinical application.
For example, the ability of these molecules to be modi-
fied so as to target particular organs and tissues should
be evaluated, and the ability of organs and tissues to
take up thus modified particles specifically measured.
Before clinical application is considered, the potential
toxicity must be ruled out.
This preliminary study demonstrates that Au DENPs

prepared using G5.NH2 dendrimer templates have good
X-ray attenuation and a substantial circulation time in
the CVS. Their potential to be biologically and chemi-
cally modified [43], combined with ongoing improve-
ments in computer technologies and the spatial
resolution of CT scanners, is likely to make CT MI with
these and related agents an increasingly important tool
for diagnosis and drug delivery.
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