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Abstract

In a common salt-in-polymer electrolyte, a polymer which has polar groups in the molecular chain is necessary
because the polar groups dissolve lithium salt and coordinate cations. Based on the above point of view,
polystyrene [PS] that has nonpolar groups is not suitable for the polymer matrix. However, in this PS-based
composite polymer-in-salt system, the transport of cations is not by segmental motion but by ion-hopping
through a lithium percolation path made of high content lithium salt. Moreover, Al2O3 can dissolve salt, instead of
polar groups of polymer matrix, by the Lewis acid-base interactions between the surface group of Al2O3 and salt.
Notably, the maximum enhancement of ionic conductivity is found in acidic Al2O3 compared with neutral and
basic Al2O3 arising from the increase of free ion fraction by dissociation of salt. It was revealed that PS-Al2O3

composite solid polymer electrolyte containing 70 wt.% salt and 10 wt.% acidic Al2O3 showed the highest ionic
conductivity of 9.78 × 10-5 Scm-1 at room temperature.
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Introduction
A lithium secondary battery using solid polymer electro-
lyte [SPE] is an attractive energy source for portable
devices since the use of SPE makes the fabrication of
safe batteries possible and permits the development of
thin batteries with design flexibility. Most of the efforts
to date have focused on poly(ethylene oxide) [PEO] as
the host material for SPE [1-3]. However, it has a major
drawback of having a low ionic conductivity (10-8 to 10-
5 Scm-1) at room temperature [4]. Thus, many research-
ers [5-7] have focused on the SPE consisting of the poly-
mer with low glass transition temperature [Tg] and
moderate concentrations of salt in order to overcome
the low ionic conductivity of SPE, but high ambient
conductivity has not yet been reached. Low ionic con-
ductivity can be achieved from the fact that the ionic
mobility strongly depends on the polymer segmental
motion and that the cation transport number is low in
the SPE at a high salt concentration. Therefore, new
materials with unconventional conduction mechanisms
are clearly needed [8].

In common SPEs, a polymer which has polar groups
in the chain is necessary for electrolyte formation. The
polar groups dissolve lithium salt and coordinate
cations. The cations can move between coordinating
sites in one chain or in neighboring chains, promoted
by the segmental motion [9]. From this point of view, a
polymer which has nonpolar groups is not suitable for
the polymer matrix in common SPEs. However, in this
new composite SPE consisting of polystyrene [PS] and
having nonpolar groups, LiCF3SO3 and Al2O3 with poly-
mer-in-salt system, the transport of cations is done by
ion-hopping through an ion percolation path made of
high content lithium salt instead of segmental motion.
Moreover, Al2O3 can cause conductivity enhancement
depending on the nature of the filler surface group [10].
In this work, the ionic conductivity of PS-Al2O3 compo-
site SPE according to the salt content was checked, and
the effect of Al2O3 type and content on ion conduction
properties in PS-based composite SPE was investigated.

Experimental section
Materials
Polystyrene (Sigma-Aldrich Corporation, St. Louis, MO,
USA) with a number average molecular weight (Mn) of
170,000 was used as received without undergoing
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further purification process. As salt, LiCF3SO3 (Sigma-
Aldrich Corporation) was dried and stored in a desicca-
tor under nitrogen. Three types of aluminum oxides
[Al2O3] (Sigma-Aldrich Corporation) with acidic, neu-
tral, and basic surface groups as fillers were also used.
As an organic solvent, N-butyl acetate (Junsei Chemical
Co., Ltd., Chuo-ku, Tokyo, Japan) was used in order to
dissolve the materials.

Preparation of PS-based composite SPE films
An appropriate amount of PS was introduced into N-
butyl acetate and stirred for 24 h; after that, a definitive
amount of LiCF3SO3 was added to the solution and stir-
red again for 24 h. At the same time of the PS/
LiCF3SO3 solution preparation, 5, 10, 15, and 20 wt.%
Al2O3 were added to N-butyl acetate. Then, the solution
was sonicated for 10 min and stirred for 24 h for disper-
sion. PS-based SPE was prepared by mixing the PS/
LiCF3SO3 and Al2O3 solutions for 4 days. The solutions
were directly cast on 3 × 3 cm2 stainless steel plates
after mixing and then allowed to dry in a vacuum oven
for 5 days at 40°C.

Characterization
Ionic conductivity of the sample was measured by
Gamry Instruments’ (Warminster, PA, USA) Reference
600 impedance analyzer. Deconvolution of the compo-
site bands of the Fourier transform infrared [FT-IR]
spectra was accomplished by the best fits of constituent
Gaussian peaks, and the fractions of salt forms were cal-
culated by the peak fitting program of Origin 7.0 soft-
ware (OriginLab Corporation, Northampton, MA, USA)
to analyze the change of salt forms in SPEs. Scanning
electron microscopy [SEM] was also used to observe the
morphology of the specimen.

Results and discussion
Ionic conductivity
Ionic conductivities of PS-based composite SPEs with salt
content
Figure 1 shows the ionic conductivities of PS-based
SPEs with 0, 5, 10, 15, and 20 wt.% Al2O3 and various
salt contents. In the common SPEs, the ionic conductiv-
ity increased with the salt content up to its peak and
then the ionic conductivity decreased because the
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Figure 1 Ionic conductivities of PS-based composite SPEs. PS-based composite SPEs with 0, 5, 10, 15, and 20 wt.% Al2O3 and various salt
contents.
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polymer mobility decreased and Tg of the polymer
increased as the salt content increased. However in PS-
based composite SPEs, there is no decrease in the ionic
conductivity because PS does not contribute to the dis-
sociation of salts and transport of cations. The transport
of cations is done by ion-hopping through the ion per-
colation path made of high content of salt instead of
segmental motion, so the ionic conductivities increased
with salt content.
Moreover, Al2O3 can dissolve the lithium salt instead

of the polar groups in the polymer matrix using Lewis
acid-base interactions between the surface group of
Al2O3 and salt [10]. The sample consisting 70 wt.% salt
and 10 wt.% Al2O3 shows the highest ionic conductivity
of 5.83 × 10-5 Scm-1.
Ionic conductivity of PS-based composite SPE according to
Al2O3 type and content
Figure 2 shows the ionic conductivities of PS-based
composite SPEs consisting 70 wt.% salt and different
types of Al2O3. The ionic conductivity increased up to
10 wt.% Al2O3 and then decreased, irrespective of the
Al2O3 type. As the content of Al2O3 increased over 10

wt.%, the aggregates of Al2O3 was observed in all types
of Al2O3. This is related to the decrease in ionic con-
ductivity at above 10 wt.% Al2O3. Among the samples,
the maximum ionic conductivity was found for SPE
with acidic Al2O3, and the ionic conductivity decreased
in the order of SPEs with acidic, neutral, and basic
Al2O3. This tendency may be related to the number of
free ions by dissociation of salt. Salt can be dissociated
by the interaction between salt anions and surface OH
groups of Al2O3. Acidic Al2O3 has had the most OH
groups which interact with salt, so the SPE having acidic
Al2O3 can have the highest free-ion numbers. Neutral
Al2O3 has had the second amount of surface OH
groups, and basic Al2O3 has had the least surface OH
groups. Thus, the ionic conductivity decreased in that
order, and the highest ionic conductivity of 9.78 × 10-5

Scm-1 could be obtained at 10 wt.% acidic Al2O3.

FT-IR evidence of dissociated ions
In the polymer-in-salt system, ion clouds made of ion
aggregates and ion pairs play an important role in ion
conduction [11], so it is necessary to investigate the
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Figure 2 Ionic conductivities of PS-based composite SPEs with different types of Al2O3.
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change of salt form of the SPE films as salt concentra-
tions increase. FT-IR spectra have confirmed the pre-
sence of ion pairs and aggregates in SPEs based upon
poly(propylene oxide) [12-16] and PEO [17-24]. A clear
distinction between free (dissociated) ions, contact ion
pairs, and more aggregates may be observed in the
vibrational spectra of the internal mode of anions, such
as the triflate anion [Tf-]. Ion association occurs at the
SO3 end of the anion; thus, the symmetric SO3 stretch-
ing mode is highly sensitive to change in the coordina-
tion state of the anion. Band fitting of these regions has
provided information pertaining to the types of aggrega-
tion and strengths of ionic interactions occurring in the
SPEs.
Above a certain salt concentration, the symmetric SO3

stretching mode is found to consist of two or more
peaks. The different anion environments may be attrib-
uted to ion association, in consideration of the nonde-
generate A1 symmetry of this mode. The symmetry of
an anion is lowered by coordination to a cation. Band
fitting of the SO3 regions reveals the peak components
which arise from various ion aggregates. Higher fre-
quency components, corresponding to higher aggre-
gates, may be observed with further increase in salt
concentration [25]. Assignments for bands observed in

the symmetric SO3 stretching regions are summarized
in Table 1[18,26].
When Al2O3 is added, the anions have greater affinity

toward the Al2O3 surface acid groups than the cations.
Due to the polarizability of the Tf-, a strong affinity can
be expected between the Tf- and the Al2O3 surface acid
groups. It results in the dissociation of the salt and
makes the cations free [10,27]. The free-ion and ion
aggregate fractions of PS-based composite SPEs having
70 wt.% salt with various types of Al2O3 are shown in
Figure 3. As shown in Figure 3, for all cases, the free-
ion fractions of SPE consisting 70 wt.% salt increased
until the content of Al2O3 reached 10 wt.%. By adding
more Al2O3, the free-ion fraction decreased. SPE with
acidic Al2O3 having the most OH groups which interact
with salt had the highest free-ion fraction. The free-ion
fraction decreased in the order of SPEs with acidic, neu-
tral, and basic Al2O3. This tendency was similar to that
of the ionic conductivity. From this result, it could be
known that the ionic conductivity was mainly influenced
by the free-ion fraction. Also, the highest ionic conduc-
tivity could be obtained in the case of SPE with 10 wt.%
acidic Al2O3 whose free-ion fraction was the highest
and ion aggregate fraction was the lowest.

SEM images
Figure 4 shows the SEM images of PS-based composite
SPEs with Al2O3 content. From the SEM images, we
can see that the fillers are well dispersed, and there are
no aggregates of Al2O3 until 10 wt.% Al2O3 is reached,
but as more Al2O3 was added, the aggregates of fillers
which might disturb the ion transport were observed.
Thus, the ionic conductivity of PS-based composite

Table 1 Some band assignments for triflate species

Band Wave number (cm-1) Assignment

νs(SO3) 1,032 Free Tf- ions, solvent-separated pairs

1,040 Ion pairs (LiTf), LiTf2
-, LiTf3

2-

1,051 Li2Tf
+ aggregate

1,062 Li3Tf
2+ aggregate
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Figure 3 Fraction types of PS-based composite SPEs. (a) Free-ion fractions and (b) ion aggregate fractions of PS-based composite SPEs
having 70 wt.% salt with various types of Al2O3.
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SPEs, as shown in Figure 2, increased up to 10 wt.%
Al2O3, and then the ionic conductivity decreased.

Conclusions
Composite SPEs based on PS, LiCF3SO3, and Al2O3 were
prepared, and the effect of the Al2O3 type and content on
ion conduction properties of SPEs was investigated. As
the salt content increased, the ionic conductivities
increased continuously. In contrary of the common SPE,
PS-based composite SPE has no decrease in ionic con-
ductivity because PS does not contribute to the dissocia-
tion of salts and transport of cations. As the Al2O3

content increased, the ionic conductivity increased until
the content of Al2O3 reached 10 wt.%. Then, the sample
consisting 70 wt.% salt and 10 wt.% Al2O3 shows the
highest ionic conductivity of 5.83 × 10-5 Scm-1. The max-
imum ionic conductivity was found in SPE with acidic
Al2O3. The ionic conductivity decreased in the order of
SPEs with acidic, neutral, and basic Al2O3. This tendency
may be related to the number of free ions by dissociation
of salt. The SEM images show that the fillers are well

dispersed, and there is no aggregate of fillers until 10 wt.
% Al2O3 is reached. On the other hand, as more Al2O3

contents were added, the aggregates of fillers appeared. It
seems that the aggregates of fillers disturb the ion trans-
port, so the ionic conductivity increased up to 10 wt.%
Al2O3, and then the ionic conductivity decreased. The
highest ionic conductivity of 9.78 × 10-5 Scm-1 could be
obtained at 10 wt.% acidic Al2O3.
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Figure 4 SEM images of PS-based composite SPEs. PS-based composite SPEs with (a) 5 wt.%, (b) 10 wt.%, (c) 15 wt.%, and (d) 20 wt.% Al2O3

contents at a magnification of ×300.
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