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Abstract

In this study, we show that the correct determination of surface morphology using scanning force microscopy
(SFM) imaging and power spectral density (PSD) analysis of the surface roughness is an extremely demanding task
that is easily affected by experimental parameters such as scan speed and feedback parameters. We present
examples were the measured topography data is significantly influenced by the feedback response of the SFM
system and the PSD curves calculated from this experimental data do not correspond to that of the true
topography. Instead, either features are “lost” due to low pass filtering or features are “created” due to oscillation of
the feedback loop. In order to overcome these serious problems we show that the interaction signal (error signal)
can be used not only to quantitatively control but also to significantly improve the quality of the topography raw
data used for the PSD analysis. In particular, the calibrated error signal image can be used in combination with the
topography image in order to obtain a correct representation of surface morphology ("true” topographic image).

From this “true” topographic image a faithful determination of the PSD of surface morphology is possible. The
corresponding PSD curve is not affected by the fine-tuning of feedback parameters, and allows for much faster
image acquisition speeds without loss of information in the PSD curve.

1 Introduction

The nanoscale surface morphology determines a wealth
of phenomena which are important for fundamental
science as well as for technological applications [1-3]. As
is well known, surface roughness is a basic parameter in
tribology [4,5], adhesion phenomena [2,6], the internal 3-
D morphology of nanostructural functional materials [7],
wetting properties of surfaces [8-11], optical reflectivity
[12,13] as well as a wealth of biological processes [8,14].
A precise and reproducible measurement of surface
roughness is therefore a key issue for basic science as
well as for engineering applications [15]. Accordingly,
important efforts have been undertaken in this field ran-
ging from the development of suitable instruments to the
normalization and traceability of length measurements.
Traditionally, surface roughness has been measured
using profilometers [15,16], although optical instruments
have proven to be very powerful tools as well [17,18].
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With the invention of the scanning tunneling microscope
(STM) [19] and later, the scanning force microscope
(SEM) [20], it has been possible to determine the mor-
phology of surfaces down to the nanometer and even the
atomic scale. Accordingly STM and SFM have been
widely used for nanoscale roughness characterization
[21-23].

The morphology of surfaces can be described using a
variety of parameters, the root mean square (RMS) rough-
ness is surely the most common one [24,25]. In addition,
other parameters such as Skewness and Kurtosis can also
be used to characterize a surface. Unfortunately, these
parameters do not describe the morphology of surfaces in
a sufficiently accurate way. This can be understood already
on very simple arguments: if we assume that a surface has
been discretized using # x n image points, the whole infor-
mation content of the surface is reduced to one single
value if only the RMS value of the surface is measured.
Surfaces with very different morphology—and thus very
different behavior with regard to tribology or adhesion—
may have the same RMS value of surface roughness. Even
worse, it can be shown that for many interesting surfaces
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the RMS roughness depends on the length scale used for
the measurement; that is, as the size of an image is
increased, the measured RMS also increases. The RMS-
value of surface roughness is therefore not a scale invar-
iant quantity. The precise description of surface morphol-
ogy therefore calls for more sophisticated tools. As
discussed in more detail elsewhere, the power spectral
density (PSD) of surface roughness is such a tool [2,26].
PSD in combination with SFM is an invaluable tool in
nanoscale science that should be further developed to
really exploit all its possibilities [7,22,27-29].

Essentially the PSD describes the mean surface rough-
ness at each length scale in a given image. Typically an
image with # x n points results in a PSD curve with /2
points. Evidently, even though the reduction of informa-
tion content is quite high, the reduction is much less as
compared to the case where only the RMS is computed.
Interestingly, for many surfaces the roughness varies in a
well defined way as the length scale is varied (so-called self
afine surfaces). In this case the PSD curve is particularly
simple since the relation log [PSD(1)] versus log(1), where
A is the wavelength of the surface roughness, is linear: log
[PSD(A)] versus log(d) = s - log(A) + b (for a detailed dis-
cussion about this matter, see [2]).

From a theoretical point of view, description of surfaces
using PSD curves is a very powerful tool and is the basics
for modern approaches relating tribology and adhesion
phenomena to microscopic and nanoscale properties of
surfaces [2]. Unfortunately, experimental determination of
nanoscale PSD is quite demanding. Due to the compres-
sing properties of the logarithm a large number of image
points are needed to have a significant amount of data
points for the horizontal axis (log(1)). Moreover, since the
relevant magnitude of the the vertical axis is also logarith-
mic (log [PSD(1)]) a large dynamic range for the height
measurement is also required, that is, very large as well as
very small height differences have to be acquired equally
well. Data adquisition in scanning probe microscopy
(SPM) is sequential and thus inherently slow as compared
to other imaging techniques which are generally based on
parallel processing (as in most optical microscopes). As is
well known, Scanning Probe techniques are based upon a
very short range of interaction between the sample to be
analyzed and a sharp tip used as probe. In order to obtain
surface morphology, the tip is scanned over the sample
while a feedback loop is used to keep tip-sample interac-
tion at a constant value. As the tip moves over the sample,
this feedback adjusts the (absolute) height of the tip in
order to compensate for height variations of the sample
surface. Correct adjustment of the feedback parameters is
fundamental for the acquisition of good topography raw
data: slow feedback will result in “smoothing” of topogra-
phy data, which would effectively imply low pass filtering
and a loss of high frequency roughness, while fast feedback
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may induce feedback oscillation, creating artificial high fre-
quency roughness not present in the true topography of
the sample. Although these feedback issues are always pre-
sent in SPM experiments and are generally solved in an
intuitive way, they are specially relevant if the PSD of sur-
face roughness is determined. Indeed, for its faithful deter-
mination each image point of the topography raw data has
to be acquired faithfully. For rough surfaces—those for
which a PSD analysis is particularly interesting—this is a
very difficult experimental challenge: feedback parameters
have to be adjusted for fast feedback but avoiding oscilla-
tions and the imaging speed has to be chosen to allow cor-
rect settling of the feedback at each image point (what is
“correct” in this context?). In principle, large enough
acquisition times (low acquisition speeds) would allow
correct measurement of topographic data; however, for
large images (more than 10> x 10® = a million data points!)
this may result in unpractical acquisition times for a single
image (up to days!). Moreover, large acquisition times
would induce additional problems due to low frequency
noise and drift, which would also distort the real topogra-
phy of the sample.

In this study, we will address in detail how to deal with
finite feedback response. We will show that the interaction
signal (error signal) can be used not only to quantitatively
control but also to significantly improve the quality of the
topography raw data used for the PSD analysis. First, we
will investigate the effect of feedback response on the
determination of the PSD. We will find that, unfortunately,
the PSD strongly depends on the setting of the feedback
loop (proportional and integral parameters, P/I) as well as
on the imaging speed. Second, we will show that if the
error signal used for the feedback is appropriately cali-
brated, then the correct determination of the PSD can be
significantly improved. In particular, the calibrated error
signal can then be used in combination with the topogra-
phy image for a faithful determination of the surface mor-
phology from which the correct PSD measurement is
obtained. Moreover, the corresponding PSD curve is
much less affected by the fine-tuning of feedback para-
meters, and allows for much faster image acquisition
speeds without loss of information in the PSD curve.

2 Experimental and data processing

Experiments were performed using a NanoTec SFM sys-
tem composed of SEFM head, high voltage controller and
PLL/dynamic measurement board [30]. In this kind of
experiments we use sharpened tips with a force constant
of 2 N/m and a resonance frequency around 70 kHz [31].
In order to obtain maximum stability of the mechanical
set-up, the microscope was kept working overnight
before the relevant measurements were performed. For
the experiments discussed in this study we operate the
SEM in dynamic mode using the oscillation amplitude as
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feedback channel (AM-DSFM). Relatively large oscilla-
tion amplitudes (50-80 nm peak-peak) and significant
reduction of oscillation amplitude are used for feedback
(setpoint of 0.5-0.75 dyee With ag... the free oscillation
frequency). We note that, contrary to typical AM-DSFM
operation in air, a phase locked loop within the dynamic
measurement board is enabled to keep the tip sample
system always at resonance.

A precise calibration of oscillation amplitude (better
than 5%) is essential for the study discussed here. Thermal
noise is used to precisely calibrate the oscillation ampli-
tude. We have recently shown how the amplitude signal,
and in particular the thermal noise of the amplitude signal,
is processed by the electronics of a dynamic unit [32].
Essentially the dynamic unit demodulates the thermal
noise signal, therefore the spectrum of the amplitude
(and/or phase) can be acquired either with a signal analy-
zer, or from the fourier transform of the time domain sig-
nal of the oscillation amplitude. From the equipartition
theorem kT/2 = ¢ < a® >/2 (kT is the thermal energy and
a” the square of the rms amplitude signal) the amplitude
signal is calibrated if the force constant c of the cantilever
is known.

The PSD of an image is usually calculated from the 2D
Fourier Transform of a topographic image by angle aver-
aging the Fourier transform in all directions [2]. Another
possibility is to compute the 1D PSD of each (horizontal)
line of an image and then average the power spectrums
obtained from all lines of the image. The latter approach
is used in this study and will be discussed in detail else-
where. PSD curves have been computed using a specifi-
cally programmed Mathematica® code or directly within
the WSxM® software [10,33].

3 Effect of feedback response on the determination
of surface morphology and PSD of surface
roughness

To illustrate the problem of feedback response on the
determination of the PSD curve, Figure 1 shows a series
of topographic images of a glass cover slide. Images were
acquired with the same imaging speed (1 line/s) but dif-
ferent proportional/integral (P/I) feedback parameters.
The cover slide has been carefully cleaned in order to
remove any contaminations from the surface. We note in
this context that already a small number of contamina-
tion particles ("nanoscale dust”) on the glass surface will
change the PSD curve obtained from an experimental
image, and thus affect the statistical properties of the
measured surface morphology. Such a fractal surface was
considered particularly appropriate for the present study,
since it will have surface roughness at all length scales.
We recall that an ideal self-affine surface will show a lin-
ear relation of the surface roughness in a log-log plot: log
[PSD(A)] versus log(A) = s - log(1) + b. For the case of the
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PSD curves shown (averages of the PSD curves for each
line), a fractal dimension D¢ = 1.5 should result in a slope
s = 2D¢ - 5 = -2 [2]. In addition, a self-affine surface
should present a characteristic disordered appearance
having large as well as small scale structures. More pre-
cisely, it should have larger “large scale structures” and
smaller “small scale structures”. In our experiments, this
“cloudy” appearance is best recognised in the insets of
the larger topographic images.

Figure 2 shows all PSD curves calculated from the differ-
ent topographic images shown in Figure 1. In addition, a
master curve is shown for comparison, which gives the
“true” PSD, to be discussed in detail below. As expected
from the arguments discussed in the introduction, images
acquired with different setpoints of the feedback loop
indeed result in quite different PSD curves. The PSD
curve obtained from the image with the highest P/I values
of the feedback loop gives the highest values for the sur-
face roughness. This PSD curve shows three clear peaks,
which are only recognised in the PSD curve but not in the
corresponding topographic image, where they are essen-
tially imperceptible even in the zooms of the large scale
image. As the P/I values are decreased, the measured sur-
face roughness also decreases. The measured curves do
not vary in a simple way since the surface roughness is
“lost” differently for large and small length scales. In parti-
cular, the three peaks observed in the “fasted” image,
strongly decrease when the P/I values are decreased.
Moreover, the “loss” of surface roughness affects the over-
all shape of the curve, and in particular its slope, from
which the fractal dimension is determined. Finally, we
note that the “cleanest” curves with a relatively linear
shape are obtained for the lowest values of the P/I para-
meters. Intuitively we would expect the middle curves to
be the better ones because low frequency components are
not lost (too much?), and no high frequency components
are “produced” due to feedback oscillations. However, how
can we assure that this argument is correct? Can we define
precise criteria in order to choose the correct PSD-curve?
To address this issue, in the next section we will present a
simple model in order to relate the measured topography
with the true topography and the measured tip-sample
interaction. Nevertheless, and in order to stress the impor-
tance of this issue, Figure 2 shows a “master curve” repre-
senting the true PSD curve of the glass cover slide. This
“master curve” will be discussed in detail below. We note
that—quite disturbingly—none of the PSD curves obtained
from the measured images coincides with the correct
“master curve”.

4 Simple modeling of the imaging acquisition
process

The key idea of this section is that topography and error
signal should be complementary if appropriate measuring
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Figure 1 Topographic images of a glass cover slide acquired with the same imaging speed. Top row: topography images of the surface
of a commercial glass cover slide acquired at a scan frequency of 1 line/s, but at different settings for the feedback loop. Feedback response
was decreased from left to right: proportional/integral parameters are 125/25, 80/16, 40/8, and 20/4 (in arbitrary units). Image size in points is
1024 x 1024 and the total acquisition time was about 18 minutes. The insets shows enlarged regions of each topographic image with an
amplified grey scale. Lateral size of the larger images is 25 um, smaller images show a zoom of 5 um. The total grey scale of all large scale
images is 8 nm and 1 nm for all insets. Bottom row: PSD curves calculated from the topographic images; the graphs show the logarithm of the
PSD of surface roughness plotted versus the logarithm of the inverse length scale. For each graph the thinner yellow lines show the PSD curves
of all the other images, while the thicker blue line shows the PSD curve for the correspondent topographic image shown in the same column.
The grid lines for the PSD graphs are Alog[x] = 1 (horizontal axis) and Alog[PSD] = 1 (vertical axis).
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units are utilized. Essentially, this is the key point of the
present study. Note that if feedback is slow so that small
scale features are filtered in the topography image, these
features will appear in the signal that is used to maintain
a constant tip-sample inter-action (error signal). On the
contrary, if feedback were perfect—which is unphysical—
the interaction signal would be constant and all informa-
tion would be in the topographic image. Finally, if the
feedback oscillates, this oscillation should be visible in
both, in the topographic and in the error signal image. In
order to analyze this point further, we recall that topo-
graphy images are acquired by maintaining constant the
interaction between tip and sample as the sample is
scanned; that is, the feedback should fulfill the mathema-
tical condition

I (x, Y,z (x, )/)) = lget (1)

where Iy, is the setpoint for the feedback, and z(x, )
is the surface profile followed by the tip. For a given
interaction field I(x, y, z), the SPM system therefore
“solves” the implicit equation (1) for the surface profile
z(x, ¥). In most cases the force field is complicated and
highly nonlinear and may even depend on the chemistry
of the sample [34]. Then the surface profile depends in
a non-trivial way on the set point chosen for image
acquisition: z(x, y) = z(x, ¥, Ier). To keep the present
analysis simple, we will assume that effects due to non-
linearity and surface chemistry are not relevant for the

experiments discussed here, that is, we will assume that
for a (reasonable) variety of setpoints the measured pro-
file does not depend on the setpoint chosen for the
feedback loop.

For a real, non-ideal feedback loop the surface profile
zp(x(2)) followed by the tip of the SPM system will devi-
ate from the true surface by some error profile dz.., (x

®)):
2 (X (1)) = Ztrue (¥ (1)) + 8Zerr (x (1)) 2)

where we have assumed that only the fast scanning
direction x is relevant for the present discussion and
have thus omitted the slow scan direction y, because for
the y direction the feedback loop has sufficient time to
settle. In order to keep the notation simple, in what fol-
lows we will also omit the time dependence of the sig-
nals. Note, however, that this dependence is quite
important since a faster scan xp, () will imply more
error signal and a different surface profile zg, (%ese(2)).

For a given surface profile zg,(x) the interaction signal
which is measured will be

Imeas (x, Zfh (x)) = I(X, Zirue (x) + SZeH(x))
= I(x, Zurue (%)) + gi(x Zirue (%)) 8zer + - -+ (3)
2 Iger + Alerr(x, zlme(x))

where we have kept only linear terms in the expansion
of the interaction field I(x, z). In a real experiment, the
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Figure 2 PSD curves calculated from the topographic images shown in Figure 1. The graphs show the logarithm of the PSD of surface
roughness plotted versus the logarithm of the inverse length scale. The thinner lines correspond to the PSD curves of the individual images
shown in Figure 1, the thicker line to a master curve as described in the main text. The grid lines for the PSD graphs are Alog[x] = 1 (horizontal

measured interaction signal /..., therefore deviates from
the chosen setpoint Iy by the error signal A/, defined
above. This deviation is caused by a finite feedback
response which results in a time lag between the “ideal”
height of the tip (zyue(#)) and the height which is reached
by the feedback loop (za,(x)). Since the tip moves over
the surface, by the time the feedback would have settled
to the correct height the tip is at a new (lateral) position
x + ox where the tip-sample height z,.(x + Jx) in general
will be different and the height zg,(x + dx) found by the
feedback loop is, again, not correct. Therefore, a SPM
system does not measure the real topography z...(x), but
some other profile zg,(x). As discussed previously, the
amount of error will depend on the scan speed. For linear
systems the error is expected to be proportional to the
scan speed. An important consequence of relation (3) is
that the error profile dz...(x) can be obtained if the “cali-
bration factor” 0I/9z is known:

Szerr = AIerr (-x)/ gi (-x/ Ztrue (-x)) (4)

With this error profile, the true topography can be
obtained directly from the measured topography zg, and
the error signal Al

Ztrue = Zfb — 0Zerr =

=z (%, Iset) — AIeH(x)/gi (%, Ztrue () ®)

Unfortunately the slope of the interaction is a quantity
which is not easy to determine. Moreover, as discussed
above, generally the interaction is nonlinear, therefore its
slope will vary with tip-sample distance and thus with the
set point chosen for constant interaction images. There
are, however, two important SFM modes where the inter-
action signal can be calibrated appropriately and where
the error signal depends linearly on tip-sample distance
for a suitable range of tip-sample interaction: the normal
force signal in the case of contact mode SFM and the
oscillation amplitude in the case of the so called AM-
DSFM mode. Moreover, in these SEM modes the interac-

tion signal can be calibrated appropriately so that the
error signal can be specified directly in length units
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(nanometers); that is, the interaction signal is then normal-
ized so that conversion factor d//dz is unity, thus Al =
0Zepr- For contact mode SFM the interaction signal is then
essentially the (static deflection) of the cantilever, while in
case of AM-DSFM mode the interaction signal is the oscil-
lation amplitude of the cantilever. In these two SFM
modes the true topography is directly obtained by simple
substraction of the topography and error signal data:

Zirue = Zfb — Alerr (6)

Therefore, from the topographic and the error image
the true topography of a sample can be obtained, which
is the raw data for the precise determination of the PSD
curve. Evidently, the true topography does not depend
on the particular set of parameters used for the feedback
loop. When the experimentally measured topography
and the error signals are considered uncorrelated enti-
ties, both will depend in a very strong way on these
parameters. Experimentally—as shown in the following
section—only the combination of both, topographic and
error signal, is therefore a quantity (i.e., the true topo-
graphy) that does not depend on a particular set of
parameters used for data acquisition (proportional/inte-
gral parameters, scan speed, etc.).

5 Determination of true surface morphology
using topographic and error signal data

To illustrate the issues discussed in the preceding sec-
tion, Figure 3 shows a series of images of a thin Plati-
num film evaporated onto a Silicon surface. Such a film
presents a grain like structure, with a typical lateral
grain size of 50 nm. This is precisely the reason why the
sample has been selected for this section: as shown in
more detail below, the grain like structure results in a
well defined surface morphology with a flat distribution
of roughness for small inverse wavelengths, and a fast
decay for high inverse wavelengths.

This behavior will significantly simplify the precise ana-
lysis of how the finite feedback response determines the
structure of the measured topography and error signal
data. The Platinum grains can be clearly resolved in the
enlarged areas of most images. Topography as well as the
corresponding amplitude (= error signal) image are pre-
sented. As discussed in the experimental section, the
amplitude images have been carefully calibrated in order
to determine the precise oscillation amplitude. This
allows to show the amplitude images in length units
(nm). Therefore all data—topography as well as amplitude
images—can be shown with the same units and the same
scale, in this case 5 nm. Images have been acquired at a
scanning rate of 1 line/s, but with different feedback
parameters: the images in the first column have been
acquired with the “fastest” feedback (high values for the
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proportional/integral parameters) while those in the last
column have been acquired with the “slowest” feedback
parameters. Correspondingly, the Platinum grains are
visualized in the topography (top row) when the feedback
is “fast”, and in the amplitude (middle row) when the
feedback is “slow”. Note that the first topography image
is essentially equivalent to the last amplitude image, that
is, visually the contrast of the grains is the same. This
proves that the calibration of the amplitude image is cor-
rect, otherwise the height of the grains would appear dif-
ferent in the topography and the amplitude image (recall
that the grey scale of the images is the same for all
images).

In addition to the topography and error signal images,
for each data set PSD curves have been computed for both
signals individually as well as for the difference z,(x, y) =
zg (%, y) - a(x, y). As expected from the discussion in the
previous section, PSD curves obtained from the individual
topography and error signal images strongly depend on
the feedback parameters. The PSD curves of the difference
image give always, within our experimental error, the
same “master PSD curve”.

Before further discussing the different PSD curves we
note that contrary to the case of the glass slide the
(“good”) PSD curves of the Platinum grains are not lin-
ear, instead they saturate for low spatial frequencies
(large scales). In order to understand this behavior, we
propose a simple model for the morphology of this sur-
face: a disordered arrangement of individual gaussian
grains with a fixed height /4 and a fixed lateral dimen-
sion wy,

2p0(%,7) = ho o~ () (2wp)

In our case, this assumption is not based on any pro-
found insight on the sample, we have chosen this shape
because it is smooth on the top and on the bottom of the
grains” and because its Fourier Transform is directly
evaluated,

1 h
Flla (e o) = // dxdy 0z y) = S~ 0 + 1)/ (263)
0

where k; = 1/A; is the spatial frequency in each direc-
tion (i = x or ), and ko = 1/wj is the spatial frequency
associated to the width of the grains. For a disordered
array of N grains we expect an “incoherent” contribution
of each grain to the total PSD, and if the grains cover the
surface in a dense arrangement, we expect about one
grain in a cell of width 2w, therefore the total number of

grains is N ~ (Scan Size/2wp)” = Area/ (4w2). The curve
log [PSD(1/2)] versus log(1/4) should therefore show a

flat region for small spatial frequencies up to the fre-
quency 1/wq corresponding to the width of the grains,
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Figure 3 Images of a Platinum surface taken all at a scan frequency of 1 line/s, but at different settings for the feedback loop. From
left to right, feedback parameters settings are (in arbitrary units): 90/45, 45/22.5, 15/7.5, 5/2.5 and 1/0.5. The images and graphs in the same
column correspond to a common data set, since the corresponding images have been acquired simultaneously at a fixed values of the feedback
loop. The upper row shows topographic images, the middle row amplitude images and the lower row graphs of the PSD curves of surface
roughness. In each graph, the PSD of surface roughness has been calculated for the topography and amplitude image shown in the
corresponding column, as well as for the difference zy,e = Zs, - Moy (Corresponding image not shown). Lateral size of the larger images is 10 um,
smaller images show a zoom of 1 um. The total grey scale of all images is 5 nm (large and small scale images as well as topographic and
amplitude images). Lower row: PSD curves calculated from the topography and amplitude images as well as the difference data (image not
shown). The grid lines for the PSD graphs are Alog[] = 1 (horizontal axis) and Alog[PSD] = 1 (vertical axis). Green lines correspond to the PSD
curves of topography plus error signal, blue curves to the topography and red curves to the error signal.

and a decrease for higher frequencies. Since =  simple model for the surface morphology the behavior of
decreases faster than any (inverse) power, this decrease is ~ the topographic and amplitude images can be further
non-linear, that is, the magnitude of the slope of the log ~ analyzed. In this context we recall that spatial (k) and
[PSD(1/A)] versus log(1/4) curve increases for high fre- temporal frequencies (v) are related through the scan
quencies. Correspondingly, this surface is not self-similar ~ speed v:
and the notion of fractal dimension is not defined. 1

This simple model correctly describes the “good” PSD k="v (7)
curves shown in Figures 3 and 4. Moreover, with this

y

log[PSD[nm?/nm™"]]

log[nm™*]

Figure 4 PSD curves corresponding to the topography and amplitude images shown in Figure 3 as well as of the difference data.
Each graph shows the log (PSD[1/A]) versus log(1/A) curve for the data acquired at different P// values. While the different curves are clearly
distinguished in the topography (a) and amplitude, (b) PSDs, the curves corresponding to the difference, (c) essentially fall on the same “master
curve”. The grid lines for the PSD graphs are Alog[k] = 1 (horizontal axis) and A log[PSD] = 1 (vertical axis).
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In the graphs shown, the highest and lowest spatial
frequencies (0.04 um™ and 20 yum™') correspond to a
temporal frequency of 1 kHz and 2 Hz.

A characteristic feature of the amplitude PSD curves
shown in Figure 3 is that for low spatial frequencies, all
curves have a constant slope s = 2.0 £ 0.1. Since for
these spatial frequencies the PSD curve of the true topo-
graphy is constant, we conclude that the slope of the
PSD curve is determined by the filtering properties of
the feedback loop. Indeed, if the P/I controller is mod-
eled by a simple first order electronic circuit with char-
acteristic time 7o we expect transfer functions

ifoU

gtopo(‘)) = 1 andgamp(v) =1-— glopo(v) = (8)

+ 1TV 1 +itov

for the topographic and the amplitude signals. There-
fore, for low frequencies the amplitude signal will grow
linearly with frequency up to the characteristic fre-
quency 1/7o. The power of the amplitude signal
increases quadratic with frequency and the log [PSD
[amplitude(1/A)]] versus log(1/A) curve should give a
straight line with slope s = 2, as is indeed observed
experimentally.

For this sample with constant PSD of surface rough-
ness up to the characteristic spatial frequency ko = 1/wq
the PSD of the amplitude signal is therefore easily
understood taking into account the transfer function of
the feedback loop. A similar analysis for the topographic
signal is less evident, because in the frequency range
where the topographic signal is filtered (for high fre-
quencies) the PSD curve of the true surface roughness
does not follow a simple relation (constant or linear).
Nevertheless, as the P/I values are decreased, the topo-
graphic signal is clearly filtered more strongly. More-
over, as the P/I values are decreased for the different set
of images, the characteristic frequency 1/7q of the feed-
back loop also decreases (spatial frequencies 12.2, 12.2,
8.7, 5, and 2.3 nm™ for P/I 90/45, 45/22.5, 15/7.5, 5/2.5,
and 1/0.5, respectively, in Figure 4). Finally we note that
even though topographic and amplitude PSD curves are
quite different for each set of P/I values, the PSD curves
of the difference image give always, within our experi-
mental error, the same “master PSD curve”. This is
recognized most easily in Figure 4, where all PSD curves
corresponding to the same kind of data (topography,
amplitude and difference data) have been collected in
the same graph in order to directly visualize how these
curves vary as the P/I values are changed. Very clearly
the topographic and amplitude signals vary, but the dif-
ference signal is constant. We stress that what seems to
be a single curve in Figure 4 is the superposition of the
five sets of difference data obtained from topographic
and amplitude data shown in Figure 3.
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Figure 5 shows a similar data set as that shown in
Figure 3, however in this experiment instead of varying
the P/I values, the scan speed is varied (from left to
right: 0.5, 1, 2, 4, and 8 lines/s). We first note that as
the scan speed is increased, a characteristic peak moves
towards lower frequencies. This peak is first observed in
the second graph”, and also in the data of Figure 3 at
essentially the same position. We attribute this peak to
oscillation of our system rather than to a true topo-
graphic feature. Therefore, according to relation (7) as
the scan speed is increased, higher temporal frequencies
are measured and the (relative) position of the peak
shifts towards lower values.

As compared to the data shown in Figure 3, only the
first two data sets give “nice” PSD curves. For high scan
speed, the topography and amplitude images do neither
result in “clean” PSD curves, nor does the difference data
obtained from each set of images result in a PSD curve
that is independent of scan speed; that is, the difference
PSD curves do not lay on a single “master curve”. In the
case of the images shown in Figure 5 we find that data
which corresponds to frequencies higher that the peak
shows a behavior which is not compatible with the sim-
ple first order model of the feedback loop discussed
above. This model essentially predicts a well defined dis-
tribution of topographic and amplitude signal as a func-
tion of frequency according to relation (8). In particular,
the PSD curves of the topographic data acquired at the
faster frequencies do not decrease more strongly than the
amplitude data, which should be the case if the assump-
tion leading to relation (8) were strictly valid. Note that
in this region, the amplitude signal is no longer high pass
filtered (the amplitude signal is “over its maximum”, and
this maximum defines the characteristic frequency 1/7,
of the feedback loop), which implies that the topographic
data should be high pass filtered. However, we observe
no high-pass filtering of topography data in these data
sets (compare this region of the PSD curves with the cor-
responding behavior in Figure 3). We attribute this non-
standard behavior to the fact that at these high temporal
frequencies the SPM setup cannot be considered a simple
(electronic) first order system defined only by the P/I
values of the feedback loop. Instead, also mechanical
resonances of the SPM setup and possibly even non-line-
arities of the tip-sample interaction have to be taken into
account, rendering the tip sample system a much more
complicated system in terms of transfer characteristic. In
particular, we believe that for a faithful description of the
tip-sample system orders higher than one, and possibly
also nonlinearities, have to be taken into account.

Finally, some additional practical issues not discussed
so far should be emphasized. First, we note that for each
SEM system the correct polarity of the error signal will
have to be determined (what is seen low/high by the
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Figure 5 Images of the same Platinum film as shown in Figure 3. The images shown were acquired at the same value of the feedback
loop, but at different imaging speeds (from left to right: 0.5, 1, 2, 4, and 8 lines/s). As previously the upper row shows topographic images, the
middle row amplitude images and the lower row graphs of the corresponding PSD curves of surface roughness. Again, lateral size of the larger
images is 10 um, smaller images show a zoom of 1 um. The total grey scale of all images is 5 nm. The grid lines for the PSD graphs are Alog[x]

error signal?). This polarity determines the sign of rela-
tion (6), that is, whether the error signal has to be added
or subtracted (as assumed in this study) in order to
obtain the “true” topography. A second issue not dis-
cussed yet is the correct setpoint for image acquisition.
In order for the error signal to faithfully reproduce the
surface morphology, it has to be a linear function of tip-
sample distance. Therefore the setpoint has to be chosen
so that there is “enough signal” when passing over high
and low surface features. This is illustrated in Figure 6
for the case of the oscillation amplitude as error signal. If
possible, the setpoint i, of the interaction should be cho-
sen such that the values between iy - 0Zyms and iy + 0Zpms
depend linearly on the tip-sample distance (recall that
the error signal is calibrated in length units), where 0z,
is the rms roughness of surface morphology. If the set-
point iy is chosen too close either to the free oscillation

amplitude (a’, = bad setpoint in Figure 6) or to the

set

minimum amplitude needed to sustain a stable oscilla-
tion, then a small surface roughness will move the tip-
sample system from the linear part of the amplitude ver-
sus distance curve. If this is the case, the error signal will
not any more contain the correct information about the
surface morphology, and the true surface morphology
cannot be reconstructed as discussed in this study.

a(A,)

a . ‘lﬁee
set*

4
A

v

A
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Figure 6 Schematic representation of the oscillation amplitude
versus the tip-sample distance. For large tip sample distances,
the free oscillation amplitude is measured. As the oscillating tip
interacts with the surface the oscillation decreases linearly with tip
sample distance. For small oscillation amplitude, the energy
pumped into the cantilever by the external driving circuit is not
sufficient to compensate for the losses induced by the tip-sample
interaction, and the oscillation stops. If the feedback loop does not
respond instantaneously to height variations as the tip is scanned
over the surface, height variations will result in variations of the
oscillation amplitude. For the kind of applications proposed in this
study, the tip-sample system has to stay in the linear regime of the
amplitude versus distance curve.
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6 Conclusions

We have shown that the correct determination of surface
morphology using SPM techniques is extremely demand-
ing and may be easily affected by experimental para-
meters. The description of surface morphology using
PSD curves is a very powerful tool, but requires very
good experimental raw data. In order to exploit the full
potential of PSD analysis every experimental data point
has to be a faithful representation of the true surface. For
feedback based and sequential imaging techniques such
as SPM, this is a very difficult task. The data shown here
proves that in most cases if only topography data is
acquired, the measured morphology is significantly
affected by the feedback response of the SPM system.
Then, the PSD curves calculated from this experimental
data do not correspond to that of the true topography.
Instead, either features are “lost” due to low pass filtering
or features are “created” due to oscillation of the feed-
back loop. In most cases the PSD curves obtained from
topographic images depend strongly on the parameters
used for data acquisition (scan speed, P/I values of the
feedback loop), and it is not clear which, if any, is the
“good” curve. When the error signal of the feedback loop
is acquired and analyzed, the characteristic response time
of the feedback loop can be determined. This response
time determines, together with the scan speed, the maxi-
mum spatial frequency up to which the topographic data
is measured faithfully. In addition, possible oscillation of
the feedback loop can also be recognized in the error sig-
nal. The error signal can thus be used to control the
quality of the topographic image.

If the error signal is correctly calibrated (in length units:
[nm]), then the topographic and the error signal can be
summed (with the correct sign!) in order to give a “true”
image that is a faithful representation of the surface mor-
phology. In particular, this combined image does not
depend on the particular set of parameters used for image
acquisition. Interestingly, we observe that the best data is
not acquired with high feedback parameters, since these
result in oscillation of the feedback loop; imperceptible in
the topographic and error signal data, but clearly observed
in the corresponding PSD curves. Therefore for faithful
imaging of the surface, the feedback parameters should
not be pushed too high, instead, as discussed in this study,
the calibrated error signal should be used to “recover” the
small scale surface morphology, which is (low-pass) fil-
tered by the feedback loop in the topographic image.

Since the nanoscale surface morphology determines
many surface related processes such as friction, adhe-
sion, wetting as well as many others, its correct determi-
nation is a fundamental issue in nanoscience. From a
theoretical point of view, the PSD of surface topography
is a basic tool to describe the statistical properties of
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surfaces and is used as a key parameter for the descrip-
tion of surface morphology in modern theories of fric-
tion and adhesion. Accordingly, its precise experimental
measurement as proposed in this study is a fundamental
issue for nanoscience, and we strongly believe that the
approach presented in this study substantially improves
the performance of any SFM when using contact mode
SEM as well as AM-DSFM, which are the two modes
used for most imaging applications.

In this study, we have chosen rather large oscillation
amplitudes and high reduction of amplitude oscillation
(= strong tip-sample interaction). This is no problem for
hard surfaces as those discussed in this study, but may
be an issue for softer materials. In this latter case, oscil-
lation amplitude as well as reduction of amplitude oscil-
lation will have to be chosen with more care and an
optimal compromise between good topography and
amplitude data, acquisition speed and sample damage
will have to be found. Nevertheless, we believe that the
method discussed here will be valuable, since the sum
of topography and error data will always reflect better
the true topography.

Endnotes

*Note that even for a sharp surface feature the SPM
images would be smoothened due to tip convolution,
that is, the sharp surface feature would “see” the curva-
ture of the tip.

PProbably the wider peak in the first graph has the
same origin but is observed wider and at lower frequen-
cies due to aliasing.
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