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Strong, conductive carbon nanotube fibers as
efficient hole collectors
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Abstract

We present the photovoltaic properties of heterojunctions made from single-walled carbon nanotube (SWNT)
fibers and n-type silicon wafers. The use of the opaque SWNT fiber allows photo-generated holes to transport
along the axis direction of the fiber. The heterojunction solar cells show conversion efficiencies of up to 3.1%
(actual) and 10.6% (nominal) at AM1.5 condition. In addition, the use of strong, environmentally benign carbon
nanotube fibers provides excellent structural stability of the photovoltaic devices.
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Introduction
As a symbolic nanomaterial, carbon nanotube (CNT)
with unique properties like high strength, high electrical
conductivity, and chemical inertness has found impor-
tant applications in optoelectronics [1], being an ideal
candidate for various components in photovoltaic
devices [2]. CNT bundles can be organized into two
typical macrostructures: fibers (1D) and films (2D). The
fabrication of homogeneous CNT films with a controlla-
ble thickness has been an important basis for the
research on CNT-involved devices where CNTs mainly
function as transparent electrodes [3]. Our recent work
on CNT/Si heterojunction solar cells [4,5] have stimu-
lated a series of studies on the photovoltaic properties
of various heterostructures, including CNT/Si [6-16],
CNT/CdTe [17], and graphene/Si Schottky junctions
[18,19]. Among these devices, the CNT film serves mul-
tiple functions as a hole collector, charge transport path,
and transparent electrode. However, the CNT film com-
posed of CNT networks has a lot of inter-bundle voids,
which should be fairly controlled to achieve high trans-
parency while maintaining sufficient lateral conductivity
of the film. The junction resistances between tubes/bun-
dles also yield a limiting value for the conductivities for
CNT films [20].

The CNT fiber is yet another macroscopic assembly of
CNT bundles in a densified manner. CNT fibers have
attracted intensive experimental and theoretical interests
and are of increasing practical importance because of
their unique 1D structure inherited from individual
CNTs [21]. Early research efforts mainly focused on orga-
nizing discontinuous nanotubes into ribbon/fiber-like
materials. We first reported that long single-walled CNT
(SWNT) strands consisting of aligned SWNTs could be
synthesized directly with a vertical floating chemical
vapor deposition (CVD) method [22]. Many approaches
have been developed since then for the assembly of
CNTs into continuous fibers through direct spinning
[23-26] and post-synthesis spinning [27-30]. Compared
to the CNT film, the 1D CNT fiber composed of densely
aligned CNT bundles has higher conductance. When
forming a heterojunction with silicon, though the fiber
itself (generally microns thick) is essentially opaque, the
photo-generated charge holes excited from the exposed
underlying silicon wafer will transport to it.
The purposes of this work are to introduce the design

of the heterojunction solar cells using SWNT fibers as
upper electrodes and n-type silicon wafers (n-Si) as
photoactive electrodes and to investigate experimentally
the photovoltaic properties of the SWNT fiber/Si het-
erojunctions, verifying the role of SWNTs as hole
collectors.
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Experiment
The SWNT fibers used in this study were obtained by a
simple film-to-fiber processing reported previously by
our group [31]. SWNT films were first prepared by a
floating CVD technique with a liquid precursor: a solu-
tion of xylene, ferrocene (0.36 mol/L), and sulfur (0.036
mol/L) [32]. Figure 1a shows the as-grown SWNT film
hung over a ceramic tray. The film is stiff enough to bear
a one-cent-coin weight. The freestanding film is highly
transparent and continuous with a large area of approxi-
mately 50 cm2; the letters behind can be clearly seen
through the film. Highly pure (> 98%) SWNT thin films
were then obtained by a two-step posttreatment: hydro-
gen peroxide oxidation by immersing the films in 30%
H2O2 solution for 72 h and then rinsing with hydrochlo-
ric acid (37% HCl) to remove amorphous impurities and
iron catalyst. Smooth and homogenous films could be
obtained when ethanol was dropped on the purified sam-
ples. A Langmuir monolayer of SWNTs was formed dur-
ing the spreading of the ethanol layer along the water
surface. The film was then picked up slowly with a glass
rod (Figure 1b) and allowed to be further densified into a
fiber upon drying. As shown in Figure 1c, the fiber was

then twisted under stretching using two motors for 5 to
approximately 10 min with a rotating speed of 30 rpm to
improve its bulk density and the alignment of the SWNT
bundles.

Results and discussion
A scanning electron microscope (SEM) image (Figure 2a)
of the SWNT film reveals uniformity of the film across
the entire area. Upon twisting, the SWNT fiber became
stronger and tougher thanks to the closer contact and
improved load transfer between nanotubes due to the
enhanced van der Waals forces and friction, which is
consistent with previously reported results [27,29,30].
Figure 1d illustrates the strength of a twisted SWNT
fiber which sustains a 200-g weight. As further revealed
by Figure 2b, d, the SWNT fiber upon twisting became
much denser and possessed substantial alignment of the
nanotubes along the twisting direction. The fiber dia-
meter was reduced by approximately 35% from 17 to 11
μm. The twist angle, defined as the angle between the
longitudinal direction of the SWNT bundles and the axis
of the fiber, is about 26°, which is large enough to yield a
strong fiber [29]. The result shows that this simple

Figure 1 Film-to-fiber processing. (a) Freestanding SWNT thin film with a coin on it. (b) Fiber formation through a wetting/drying process. (c)
Fiber twisting. (d) A single fiber bearing a 200-g weight.
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process allowed one-step formation of continuous nano-
tube fibers.
Before solar cell assembly, the mechanical properties of

the SWNT fibers are tested. Figure 3a shows typical
stress-strain curves for three SWNT fibers before frac-
ture. All the SWNT fibers fractured at the highest load.
The tensile strength and Young’s modulus of our SWNT
fibers were measured in the range 0.8 to 1.0 GPa and 8 to
10 GPa, respectively. During loading to failure, the fibers,
and hence the SWNT bundles, experienced two different
strains, elastic strain and plastic strain, owing to slippage
between aligned bundles and plastic deformation of indi-
vidual nanotubes. Three different fracture morphologies
were observed: (1) brittle fracture due to strong inter-
bundle coupling (Figure 3b), (2) fan-shaped fracture sur-
face due to fiber unwinding (Figure 3c), and (3) sliding of
bundles due to weak inter-bundle coupling and small
twist angle (approximately 11°) (Figure 3d).
The high tensile strengths of the SWNT fibers are

consistent with their electrical conducting performance.
Owing to the higher density, the conducting properties

of the twisted fibers are superior to the original fibers.
Figure 4a shows the current density versus voltage
curves of a typical SWNT fiber (approximately 1 cm
long) before and after twisting. The current density is
defined as the current per unit cross-sectional area of
the SWNT fiber. The conductivity was enhanced fea-
tured with the resistivity reduced by approximately 40%
from 9.7 × 10-4 to 5.5 × 10-4 Ω∙cm-1. Raman spectra at
an excitation of 633 nm show high G-band intensity
(IG) and very low D-band intensity (ID) of as-produced
CNT network (black) and CNT fiber (red) in Figure 4b.
The ratios of IG/ID are about 30, indicating high crystal-
lization of CNT and negligible amorphous carbon. The
two peak positions remain unchanged (D-band at 1,322
cm-1 and G-band at 1,589 cm-1), revealing an absence of
optical absorption change during the fiber twisting
process.
Because the SWNT fibers were of macroscopic lengths

and provided 1D electrical conducting channels, photo-
voltaic tests have been performed on the heterojunction
solar cells made from the fibers and n-Si. The SWNT

Figure 2 SEM images. (a) The single-walled CNT (SWNT) film and (b, c, d) a densified and twisted SWNT fiber.
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fiber/n-Si heterojunction was fabricated as illustrated in
Figure 5a. An n-type Si (100) wafer (doping density, 2 ×
1015 cm-3) with a 300-nm SiO2 layer was patterned by
photolithography and wet-etching to make a square
window of 9 mm2. A back electrode of a Ti/Pd/Ag layer
was used to ensure high-quality Ohm contact with the
silicon. A SWNT fiber was then transferred to the top

of the patterned silicon wafer and naturally dried. To
introduce a strong adhesion between the fiber and the
wafer, a piece of transparent tape was coated on the
fiber. Forward bias was defined as positive voltage
applied to the SWNT fiber. The current-voltage data
were recorded using a Keithley 2601 SourceMeter
(Keithley Instruments, Inc., Cleveland, OH, USA). The
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Figure 3 Mechanical properties of the single-walled CNT (SWNT) fibers. (a) Tensile stress-strain curves of three SWNT fibers. (b, c, d) SEM
images of fractured SWNT fibers.
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Figure 4 Conducting properties of the single-walled CNT (SWNT) fibers. (a)Current density-voltage curves of a SWNT fiber before and after
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solar devices were tested with a Newport solar simulator
(Newport, Beijing, China) under AM1.5 condition.
As illustrated in the bottom panel of Figure 5a, the

fiber acted as a hole collector to extract the photo-
excited holes generated within the rectangle region
(marked with a dashed line) defined by the minority dif-
fusion length (Lp) (approximately 20 μm for n-Si at 2 ×
1015 cm-3 doping level) of the silicon and the fiber
length. Figure 5b shows a SEM image of the SWNT
fiber/n-Si junction.
Figure 5c shows the measured current density-voltage

(J-V) characteristics for a typical SWNT fiber/Si cell.
Based on the J-V characteristics, the energy conversion
efficiency (h) of the solar cell was estimated. The effi-
ciency is defined by

η = jsc · Voc · FF/Pin
where Jsc is the short-circuit current density (Jsc = Isc

/S). Here, the nominal current density is defined as the
current per unit projectional area (Sn = length × dia-
meter) of the SWNT fiber; the actual current density is

defined as the current per unit area when the minority
diffusion in silicon is considered (Sa = Sn + 2Lp ×
length). Correspondingly, the actual efficiency (ha) and
nominal efficiency (hn) will be obtained. Voc is the
open-circuit voltage, Pin is the incident power density
(100 mW/cm2), and FF is the fill factor, which is defined
by the relation

FF = Jm · Vm/Jsc · Voc

where (JmVm) is the maximum power point of the J-V
characteristic of the solar cell.
Along with the other two tested cells, the photovoltaic

performance of the three cells is summarized in Table 1.
Initial tests have shown ha of 2% to approximately 3%
and hn of 6% to approximately 10% at AM1.5, proving
that SWNT fiber-on-Si is a potentially suitable config-
uration for making solar cells. Comparing sample #1
and sample #2 with different diameters in Table 1 the
smaller diameter results in a smaller projectional area
(Sn) and entire effective area (Sa), leading to a higher
cell efficiency.
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Figure 5 The single-walled CNT (SWNT) fiber/n-Si solar cell. (a) Device schematics of the SWNT fiber/n-Si solar cell. (b) SEM image of the
SWNT fiber/n-Si junction. (c) Dark and light (AM1.5) J-V curves of the SWNT fiber/n-Si solar cell. (d) lnI-V plot and (inset) dV/d(lnI)-I plot.
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As shown in Figure 5c, the Voc and FF of the SWNT
fiber/Si device are 0.445 V and 49.1%, respectively, which
are comparable to the values for CNT film/Si cells [32].
The overall hn of the fiber device (approximately 10.6%) is
about 43% higher than that of the film device (approxi-
mately 7.4%). This disparity arose mainly from the differ-
ent definition of the junction area for these two devices. In
this fiber device, the ha is 3.17% when the entire effective
area is used instead of only the fiber projection area. It is
worth mentioning that the size of the inter-bundle voids
within a CNT film is < 5 μm [32], which is substantially
smaller than the Lp (20 μm). This implies that the SWNT
bundles with an inter-spacing of 2 Lp will give the optimal
charge collection. The cell efficiencies are expected to be
further improved by acid doping [16].
Consistent with the characteristics of the 1D/2D junc-

tion, we note that the device only shows a moderate recti-
fication ratio which is approximately 1,680 at ± 0.8 V, and
a typical reverse current at -1.0 V is 250 nA. As shown in
Figure 5d, at low forward voltages, the current follows an
exponential dependence with ideality factor (n) equal to
1.38. At higher voltages, the current follows an exponential
dependence with an ideality factor of 2.9. This variation
corresponds to a transition between two regimes [33]: (1)
the current is dominated by diffusion and generation-
recombination outside the space charge region (n = 1),
and (2) the high-injection regime, where the density of the
minority carrier is comparable with that of the majority
(n = 2). A dV/d(lnI)-I plot (Figure 5d, inset) is used to ana-
lyze the current-voltage characteristics when the series
resistance (Rs) begins to dominate, yielding a Rs of
approximately 62 Ω.
The 1D nature of the SWNT fiber offers a tremen-

dous opportunity for exciton dissociation. SWNTs in
the devices are involved in multiple processes including
hole collecting and transporting. Despite its opaque fea-
ture and the relatively small interfacial area for charge
separation, the SWNT fiber provides many 1D paths,
forming a conducting channel for charge transport.
The devices present a great potential for use as photo-

voltaic solar cells and light sensors. In addition to
enhancing photovoltaic conversion efficiency, the incor-
poration of the robust SWNT fibers can potentially
improve the mechanical and environmental stability of
the devices.

Conclusions
To conclude, we have demonstrated the photovoltaic
properties of the SWNT fiber/Si heterojunction and
revealed that SWNTs can be used as efficient hole collec-
tors. The SWNT fiber/n-Si solar cell studied here repre-
sents an addition to the CNT film/n-Si counterparts
reported by us previously. The photovoltaic devices also
show excellent structural stability due to the use of strong,
environmentally benign CNT fibers.
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