Peponi et al. Nanoscale Research Letters 2012, 7:103
http://www.nanoscalereslett.com/content/7/1/103

® Nanoscale Research Letters

a SpringerOpen Journal

Nanostructured morphology of a random P(DLLA-

co-CL) copolymer

Laura Peponi’, Angel Marcos-Ferndndez and José Maria Kenny

Abstract

random copolymers.

The random architecture of a commercial copolymer of poly(DL-lactic acid) and poly(e-caprolactone), poly(DL-
lactide-co-caprolactone), has been characterized by chemical structure analysis from hydrogen-1 nuclear magnetic
resonance results. Moreover, spherical nanodomains have been detected in the thin films of this copolymer
obtained after solvent evaporation. These nanodomains studied by atomic force microscopy and transmission
elecron microscopy grow progressively under annealing until they collapse and form a homogenous disordered
structure. This is the first time that the nanostructure of random poly(DL-lactic acid)/poly-(e-caprolactone)
copolymers is revealed, representing one of few experimental evidences on the possible nanostructuration of
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Background

In the past years, the request of polymers for applica-
tions in the biomedical sector has grown drastically.
Among others, poly-(lactic acid) [PLA], derived from
renewable resources, is currently being used in a num-
ber of biomedical applications, such as in sutures, stents,
drug delivery devices, and tissue engineering [1].
Besides, the biodegradable petroleum-based polyester
poly-(e-caprolactone) [PCL] has also been widely studied
[2-4]. However, these polymers are inappropriate for
numerous uses where highly flexible biodegradable
materials are required [5]. Therefore, different strategies
have been reported to properly modify the intrinsic
properties of both polymers, including the use of addi-
tives and nanoparticles [6-8]. Another possible strategy
is constituted by blending or copolymerizing them
together, allowing the fabrication of a variety of biode-
gradable materials with improved properties in compari-
son with those of the parent homopolymers [3,9].
Biodegradable PLA-blend-PCL materials can offer a
wide variety of physical properties; the glassy PLA with
a relatively high degradation rate shows better tensile
strength, while the rubbery PCL with a much slower
degradation rate shows better toughness [10]. As
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reported in the scientific literature, the PCL/PLA blend
can form typical immiscible morphologies (of few
micrometer scales) such as spherical droplets, fibrous
and co-continuous structures by varying the homopoly-
mer composition [11,12].

In the general case of copolymers, their final proper-
ties depend not only on their composition but also on
their architecture (i.e., random, alternate, or block). Ran-
dom and alternate copolymers are reported to be typi-
cally one-phase disordered materials with concentration
fluctuations of a relatively short range [13]. On the
other hand, block copolymers present phase separation
in the nanometer range, taking advantage of the cova-
lent bonding between the immiscible constituting blocks
which are able to self-assemble into well-defined
ordered nanostructures with domain dimensions of 5 to
100 nm [14-17]. It is, therefore, not surprising that
block copolymers have attracted worldwide attention of
physicists, chemists, and engineers, developing numer-
ous applications ranging from thermoplastic elastomers,
adhesives, sealants, polymer blend compatibilizers, emul-
sifiers, and other recent advances in their medical appli-
cations [17-21]. The main features of these
nanostructures, such as their composition, morphology,
dimensions, spacing, and order are of primary signifi-
cance for the chemical, mechanical, optical, and electro-
magnetic properties exhibited [22,23].
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Few studies have been reported on PLA/PCL copoly-
mers with particular focus on their crystallization beha-
vior [3,5]. In this work, a commercial random
copolymer based on poly(DL-lactic acid) [PDLLA] and
PCL is studied, focusing the attention on its chemical
architecture and nanostructured morphology.

Methods

Materials

The copolymer based on poly(DL-lactic acid) and poly
(e-caprolactone), poly(DL-lactide-co-caprolactone) [P
(DLLA-co-CL)], was supplied by Sigma Aldrich (St.
Louis, MO, USA) with a nominal 86 mol% of PDLLA.
Their solubility parameters calculated based on the Hof-
tyzer-van Krevelen theory [24] are 27 and 25, respec-
tively. Pure chloroform from Sigma Aldrich was used as
solvent.

Sample preparation

A solution of 0.01 g of P(DLLA-co-CL) in 5 mL of
chloroform has been obtained by stirring the sample for
12 h at room temperature in a closed vessel.

Physicochemical analysis

The copolymer was characterized by hydrogen-1 nuclear
magnetic resonance [IH-NMR] in a Varian Mercury
400 apparatus (Varian Inc., Palo Alto, CA, USA) at 400
MHz, using CDClI; as solvent, and by a relaxation time
between pulses of 5 s. The residual signal of the deuter-
ated solvent was used as the internal reference (7.26
ppm).

Raman spectra were obtained using a Renishaw in via
Reflex Raman System (Renishaw plc, Wotton-under-
Edge, UK) employing a laser wavelength of 785 nm
(laser power at sample = 10 mW; microscope objective
= x 100). Spectra were recorded at room temperature
after the exposure time of 10 s, which is necessary to
decay the fluorescence.

Morphological analysis

The morphological features of the copolymer films were
investigated using atomic force microscopy [AFM] and
transmission electron microscopy [TEM]. The AFM is
operating in a tapping mode [TM] with a scanning
probe microscope (Nanoscope IV, Multimode TM from
Veeco-Digital Instruments, Plainview, NY, USA). Height
and phase images were obtained under ambient condi-
tions with a typical scan speed of 0.5 to 1 line/s, using a
scan head with a maximum range of 100 pm x 100 pm.
The TEM measurements were performed on a JEOL
JEM-2100 TEM instrument (JEOL Ltd., Akishima,
Tokyo, Japan), with a LaB6 filament, with an operating
voltage of 200 kV. For the morphological analysis by
atomic force microscopy, a transparent thin film (ca.
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300 nm) was obtained using a spin coater SCS P-6700
(Special Coating Systems, Inc., Indianapolis, IN, USA) at
4,000 rpm for 140 s followed by solvent evaporation at
ambient conditions for 24 h, while for the TEM analysis,
the solution, which was twice diluted, has been cast
directly on the grid and evaporated at the same
conditions.

Thermal analysis

Differential scanning calorimetry [DSC] measurements
were performed with a Mettler-Toledo DSC-822 calori-
meter (Mettler-Toledo, Inc., Columbus, OH, USA) cali-
brated with high-purity indium. All experiments were
conducted under a nitrogen flow of 20 mL-min !, using
7- to 10-mg samples in closed aluminum pans, in a tem-
perature range from -90°C to 200°C with a rate of 10°C
min™, using a heating-cooling-heating cycle. The second
heating scan was used to calculate the glass transition
temperature [T,] of the matrix.

Small-angle X-ray scattering [SAXS] measurements
were taken at beamline BM16 at the European Synchro-
tron Radiation Facility (Grenoble, France). Samples were
placed in between aluminum foils within a Linkam hot
stage (Linkam Scientific Instruments, Tadworth, UK)
and heated at 10°C min™* while the SAXS spectra were
recorded. Calibration of temperature gave a difference
of approximately 7°C between the temperature reading
at the hot stage display and the real temperature at the
sample.

Results and discussion
The main results on the physicochemical and thermal
behaviors of the analyzed random copolymer P(DLLA-
co-CL) have been the number average molecular weight
[M,] calculated by 1H-NMR and T, obtained by DSC.
In particular, the M,, was calculated through two differ-
ent approaches: the first one, taking into account the
terminal groups, produced a value of 21,000 g/mol,
while the ratio between the caprolactone [CL] units and
the initiator produced a value of 28,000 g/mol. From
thermal analysis, we obtained a T, of about 24°C.

Moreover, the measured PDLLA content obtained
from 1H-NMR was 89.8 mol% in contrast with the
value of PDLLA which was 86 mol% given by the sup-
plier. This difference can be considered a small one and
in the range of the possible deviation in different
batches. In fact, the ratio of the lactic acid [LA] and CL
signals allows a quite high accuracy for this calculation
with a dispersion of 0.3% in three repetitions. We think
that the supplier has provided an average value that
could change from batch to batch without reporting the
exact value for each batch.

The 1H-NMR spectrum for P(DLLA-co-CL) is
reported in Figure 1, where also the general chemical
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Figure 1 1H-NMR spectrum of the P(DLLA-co-CL) used in this work. CL refers to polymerized caprolactone units, and LA, to polymerized
lactide units. The general chemical structure of the copolymer P(DLLA-co-CL) is reported on top (R = polymerization initiator).
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structure for this copolymer, assuming monofunctional
initiator R, is described. This scheme does not imply a
di-block structure. The analysis of the IH-NMR spec-
trum was performed using Kasperczyk’s work as refer-
ence [25]. Characteristic signals for polymerized
caprolactone and polymerized lactide are observed. The
multiplet from 5.05 to 5.25 ppm is assigned to methine
proton of polymerized lactide (f), with some rests of
unpolymerized lactide at approximately 5.03 ppm.
Almost undetectable, a negligible signal at approxi-
mately 4.35 ppm for terminal LA units appears. At
approximately 4.23 ppm and 2.63 ppm, two small sig-
nals are due to unreacted g-caprolactone. Calculations
allow the determination of the amount of unreacted &-
caprolactone and unreacted lactide as less than 0.6 wt.%
and less than 0.2 wt.%, respectively. The multiplet from
4.08 to 4.18 ppm is due to the CL proton a that linked
to a LA molecule, while the triplet at 4.05 ppm indicates
that the CL proton a linked to another CL molecule.
The triplet at 3.74 ppm is related to the CL proton a
for terminal CL molecules (-CH,-OH). The multiplet
between 2.34 to 2.44 ppm is due to the CL proton e
that linked to a LA molecule, while the triplet at 2.30
indicates that the CL proton e linked to another CL

molecule. For the rest of the spectrum, multiplets at
1.66 ppm and 1.39 ppm are related to the CL protons b,
d, and c, respectively, and the multiplet at 1.56 ppm, to
the LA methyl protons g. So, the ratio of the LA signals
to the CL signals results in a molar composition LA/CL
of the copolymer of 89.8:10.2 mol% (corresponding to
84.8:15.2 wt.%).

If the copolymer is a di-block copolymer, the ratio of
the signal of polymerized CL linked to LA molecules to
the signal of terminal CL should be 1, and in our case,
it is approximately 8.9. Furthermore, the ratio of the sig-
nal due to CL linked to LA to the signal of CL linked to
CL is approximately 3.15, indicating the preponderance
of isolated CL units in the polymer backbone. From
these results, it is clear that the chemical structure of
the copolymers approaches more likely the structure of
a random copolymer. As the molar content of CL in the
copolymer is low, 10.2%, it is reasonable to presume
that CL units are isolated in between PLA units (-LA-
CL-LA-) or form blocks of double CL units (-LA-CL-
CL-LA-), with the existence of longer CL blocks being
negligible. Then, from the signals due to CL linked to
LA and to CL linked to CL, a 68 mol% of isolated CL
units and 32 mol% of double CL units are calculated.
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Once the total CL and CL-CL units are determined, it is
possible to calculate the mean length of the LA blocks
which results to 12.

Summarizing the 1IH-NMR results, the P(DLLA-co-
CL) copolymer used in this study has the structure of a
predominantly random copolymer with most of the CL
units isolated in the copolymer backbone, therefore
causing its inability to crystallize, and with blocks of
polymerized LA units that are also unable to crystallize,
producing an amorphous copolymer. Neither melting
nor crystallization was found in the DSC thermogram
(not shown), indicating the amorphous nature of the
copolymer. The amorphous structure was also con-
firmed by SAXS (data not shown).

The amorphous state of the copolymer is confirmed
also by Raman spectroscopy. In fact, as reported by Kir-
ster et al. [26], the presence of a broad band at 868 cm™
and the absence of the 1,107-cm™ and 912-cm™ narrow
peaks are discriminant to characterize the amorphous
state of PCL. The spectrogram reported in Figure 2 is in
good agreement with this analysis. Above the Raman
spectrogram, the values of the main peaks for the CL
monomer are indicated, while below the line, the main
characteristic peaks for the DLLA monomer are
reported. In our case, the Raman line at 868 cm! s
clearly detected and the peaks at 1107 cm™ and 912
cm™ are not detected. Moreover, the large band in the
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region from 1,300 to 1,360 cm™' including the Raman
line at 1,338 cm™ confirms the presence of DLLA units
and so the amorphous state of the copolymer.

When the copolymer was spin-cast in a film from a
chloroform solution, an unexpected nanostructured
phase separation was obtained. In fact, the AFM results
reported in Figure 3 indicate the formation of a nanos-
tructure with spherical domains having an average dia-
meter of 48 nm.

The nanostructuration observed is coherent with the
computer simulation of the phase diagram of random
copolymers carried out by Houdayer and Muller [27].
Based on our knowledge, this is the first time that the
nanostructuration of a P(DLLA-co-CL) copolymer is
reported. Moreover, very few experimental demonstra-
tions of the nanostructuration of random copolymers
have been reported in the scientific literature [28,29].
Taking into account the small amount of PCL, less
than 15 mol%, it is assumed that spherical CL-
enriched domains have been obtained. In this case, we
consider that, because of the chemical nature of the
copolymer, the higher affinity of chloroform for CL
than for LA (as obtained by the solubility parameters
calculated by the Hoftyzer and van Krevelen theory
[24]) has favored the phase separation of CL-enriched
domains in a matrix of pure LA or of LA with a lower
CL content.

40000
- 868 cm ——P(DLA-co-CL) I
35000 — _
' g
30000 — il
]
i | "_E 3
25000 4 - O
- s 3
20000 - ) &
(o]
] o
15000 — |
i | e =
10000 _l ) 55 =
1 - 'c E =
5000 £ §6 83 3
. o < (a ] -
< o
0 ~ =
T T T T T T T T
250 500 750 1000 1250 1500 1750
Wavenumbers/cm”
Figure 2 Raman spectrogram of P(DLLA-co-CL).
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Figure 3 Images of the solvent spin-cast copolymer film at room temperature. (@) 3 x 3-um TM-AFM height and (b) phase images.

The same spherical morphology has been detected by
TEM analysis, as shown on Figure 4, where spheres
with a diameter of about 120 nm are observed. Whereas
the TEM image distinguishes between areas with differ-
ent chemical composition, the AFM image distinguishes
between areas with differences in rigidity, leading to the
different size determined by both techniques. Moreover,
it is known that nanostructuration is strongly dependent
on the substrate type and film thickness [23]. In this
particular case, the TEM analysis was performed on a
150-nm-thick film on a carbon substrate, while the
AFM analysis was performed on a 300-nm-thick film on
a glass substrate.

After 3 h of annealing treatment at 65°C under
vacuum, the spherical domains increased their dimen-
sions (Figure 5), while the fraction of the spherical
domains, calculated from the AFM images, remain

almost constant (ca. 7%). In this case, the spherical
domains present an average diameter of 76 nm which is
clearly higher than the average diameter of the CL-
enriched domains obtained before annealing. This fact
indicates that the spherical morphology obtained at an
ambient condition represents a non-equilibrium nanos-
tructure that is able to modify itself when the diffusion
process is activated by an annealing treatment. This
means that the morphological structure obtained is able
to reach a free-energy minimization, resulting in the for-
mation of ordered structures as in the case of block
copolymers [30].

Moreover, the diameters of the spherical domains in
the case of the room temperature-nanostructured copo-
lymer follow a Gaussian statistical distribution (Figure
6). As shown by Teraoka [31], given two different
points, rl and r2, the Gaussian distribution indicates a

Figure 4 TEM images of the solvent cast copolymer film at room temperature. Scale bar, 500 nm.
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Figure 5 Images of the 3-h-annealed copolymer at 65°C. (a) 3 x 3-um TM-AFM height and (b) phase images.

transition probability for r2 to move into a small volume
around rl, justifying in our case a stable phase separa-
tion of CL-enriched spherical domains in a LA-enriched
matrix. Instead, an exponential curve of third order is
required in order to fit the experimental data of the 3-
h-annealed copolymer, confirming the strong changes in
the phase distribution of the two samples.

For longer annealing times, the nanostructured
domains collapse and a disordered homogeneous struc-
ture is formed (not shown). It turns out that the phase

segregation is characterized by a non-equilibrium geo-
metrical rearrangement of the interfaces which tends to
aggregate, minimizing the surface energy, and evolve to
a dissolution of the nanostructured domains in the
PDLLA-rich phase.

Conclusions

A P(DLLA-co-CL) copolymer has been studied in terms
of chemical structure and morphological behavior. In
particular, we demonstrated the random architecture of
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the copolymer with a LA/CL mole ratio of 89.8:10.2
with a number average molecular weight of 28,200 g/
mol. From the morphological point of view, interesting
nanostructured spherical domains have been obtained
representing CL-enriched spheres with an average dia-
meter of 48 nm. The annealing treatment enlarged pro-
gressively the CL-enriched domains, maintaining their
spherical shape until they collapse and a homogeneous
disordered structure is obtained. This is the first time
that the nanostructure of random PDLLA/PCL copoly-
mers is revealed, representing one of few experimental
evidences on the possible nanostructuration of random
copolymers.
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