

NANO EXPRESS Open Access

Facile synthesis of nano-Li₄ Ti₅O₁₂ for high-rate Li-ion battery anodes

Yun-Ho Jin, Kyung-Mi Min, Hyun-Woo Shim, Seung-Deok Seo, In-Sung Hwang, Kyung-Soo Park and Dong-Wan Kim*

Abstract

One of the most promising anode materials for Li-ion batteries, $Li_4Ti_5O_{12}$, has attracted attention because it is a zero-strain Li insertion host having a stable insertion potential. In this study, we suggest two different synthetic processes to prepare $Li_4Ti_5O_{12}$ using anatase TiO_2 nanoprecursors. TiO_2 powders, which have extraordinarily large surface areas of more than 250 m² g⁻¹, were initially prepared through the urea-forced hydrolysis/precipitation route below 100°C. For the synthesis of $Li_4Ti_5O_{12}$, LiOH and Li_2CO_3 were added to TiO_2 solutions prepared in water and ethanol media, respectively. The powders were subsequently dried and calcined at various temperatures. The phase and morphological transitions from TiO_2 to $Li_4Ti_5O_{12}$ were characterized using X-ray powder diffraction and transmission electron microscopy. The electrochemical performance of nanosized $Li_4Ti_5O_{12}$ was evaluated in detail by cyclic voltammetry and galvanostatic cycling. Furthermore, the high-rate performance and long-term cycle stability of $Li_4Ti_5O_{12}$ anodes for use in Li-ion batteries were discussed.

Introduction

Li₄Ti₅O₁₂ is one of the most promising anode materials for Li-ion batteries even though it has lower specific capacity (175 mAh g⁻¹) than does graphite (372 mAh g⁻¹). One of the unique properties of Li₄Ti₅O₁₂ is the negligible lattice change in the Li-ion insertion/desertion process, which provides good high-rate cycling stability [1]. The electrochemical properties of Li₄Ti₅O₁₂ are dependent on its method of preparation. The conventional solid-state, sol-gel [2], hydrothermal [3], spray pyrolysis [4], and combustion [5] methods have been proposed for Li₄Ti₅O₁₂ synthesis. Among these, the solid-state process is a simple method that is well suited for production scale-up. However, the solid-state process using TiO2 as a starting precursor requires lengthy heating with Li salts at high temperatures in order to obtain highly crystalline Li₄Ti₅O₁₂ [6]. As a result, particle size control is more difficult than that in hydrothermal or sol-gel method, and the resultant larger particles lead to poor capacity retention and rate capability.

Herein, we demonstrate the preparation of highly crystalline nanosized $Li_4Ti_5O_{12}$ [nano- $Li_4Ti_5O_{12}$] with a

uniform particle size via a urea-mediated wet process, in which a ${\rm TiO_2}$ precursor with a large surface area is initially formed, followed by wet and solid-state processes with different Li sources, LiOH and ${\rm Li_2CO_3}$, respectively. After subsequent heat treatment, the electrochemical performance of the resultant ${\rm Li_4Ti_5O_{12}}$ as an anode for Li-ion batteries is evaluated and discussed.

Experimental procedure

Preparation of TiO₂ precursor

TiO₂ nanoparticles with an anatase structure were prepared using the urea-mediated precipitation method [7], in which 0.015 M titanium trichloride (20% in 3% hydrochloric acid, TiCl₃, Alfa Aesar, Ward Hill, MA, USA) and 3.0 M urea (99.3%, (NH₂)₂CO, Alfa Aesar, Ward Hill, MA, USA) were dissolved in deionized [DI] water at room temperature. The solution was heated at 90°C to 100°C for 4 h with magnetic stirring. Precipitates were obtained by centrifugation and repeated washing (five times with DI water and once with anhydrous ethanol). The powders were dried at 100°C for several hours in a vacuum oven.

Preparation of Li₄Ti₅O₁₂

Wet process

Stoichiometric amounts of the prepared TiO₂ nanopowder were dispersed in DI water by sonication for 2 h.

Department of Materials Science and Engineering, Ajou University, Suwon 443-749, South Korea

^{*} Correspondence: dwkim@ajou.ac.kr

A stoichiometric amount of LiOH (98%, Sigma-Aldrich, St. Louis, MO, USA) was then dissolved in the solution with stirring. The resulting white-colored suspensions were heated at 110° C to evaporate water. Finally, the powder was calcined at various temperatures in air to afford $\text{Li}_4\text{Ti}_5\text{O}_{12}$.

Solid-state process

For the solid-state process, $\rm Li_2CO_3$ (99%, Sigma-Aldrich, St. Louis, MO, USA) was chosen as the Li source. The stoichiometric mixture was agitated for 24 h with a zirconia ball in absolute ethanol, dried, and calcined at various temperatures in air.

Characterization of TiO₂ precursors and Li₄Ti₅O₁₂ nanoparticles

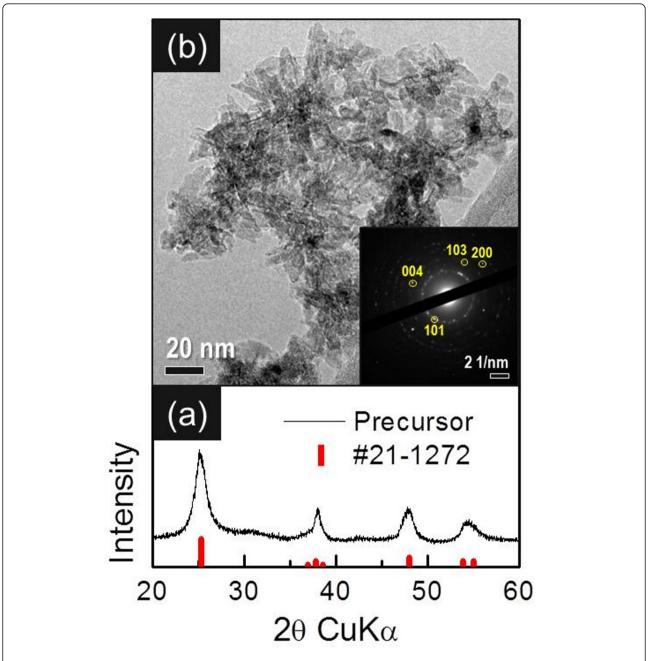
The powders were characterized by X-ray powder diffraction [XRD] (D/max-2500 V, Rigaku, Tokyo, Japan), Brunauer-Emmett-Teller [BET] (Belsorp-mini II, BEL Japan Inc., Osaka, Japan) surface area determination, high-resolution transmission electron microscopy [HRTEM] (JEM-3000F, JEOL, Tokyo, Japan) at an accelerating voltage of 300 kV, and field-emission scanning electron microscopy [FESEM] (JSM-6700F, JEOL, Tokyo, Japan).

Electrochemical analysis

A mixture consisting of 70 wt.% of the active materials, 15 wt.% Super P carbon black (MMM Carbon, Brussels, Belgium), and 15 wt.% Kynar 2801 binder (PVDF-HFP, Arkema Inc., King of Prussia, PA, USA) was dissolved in 1-methyl-2-pyrrolidinone (Sigma-Aldrich, St. Louis, MO, USA) solvent for uniform dispersion of the active materials on a Cu foil to obtain positive electrodes. Then, the solvent was evaporated in a vacuum oven at 100°C. A Swagelok-type cell was assembled in an Ar-filled glove box in order to protect the cell from oxidation and moisture. A Li metal foil (negative electrode) and the prepared mixture (positive electrode) were saturated with a liquid electrolyte obtained by dissolving 1 M LiPF₆ in ethylene carbonate and dimethyl carbonate (1:1 by volume, Techno Semichem Co., Ltd., Sungnam, South Korea). Li₄Ti₅O₁₂ powders were analyzed by the galvanostatic discharge/charge cycling method and cyclic voltammetry [CV] measurements with a battery cycler (WBCS 3000, WonATech, Seoul, South Korea). Each cell was cycled through a voltage range of 1.0 to 2.5 V versus Li/Li⁺.

Results and discussion

The XRD pattern (Figure 1a) for precursor powders indicated that they comprised anatase-phase TiO₂ (Joint Committee of Powder Diffraction System [JCPDS] #21-1272). The TiO₂ morphology was found to be flower-like clusters of 50 nm in size, which comprised tiny


aggregated nanorods (Figure 1b). For this reason, the powder had an extremely large surface area, $267 \text{ m}^2 \text{ g}^{-1}$, as confirmed by BET surface area measurements. In addition, the electron diffraction (selected area electron diffraction [SAED]) pattern of the selected area coincided with that of anatase TiO_2 , as shown in the inset of Figure 1b.

In order to obtain nano-Li₄Ti₅O₁₂ with a sufficiently large surface area, the TiO₂ powders prepared as mentioned above were used as precursors. After mixing the TiO₂ precursor with LiOH and Li₂CO₃ through wet and solid-state processes, respectively, both mixtures were calcined at 700°C and 800°C and were found to mainly comprise the cubic Li₄Ti₅O₁₂ phase (JCPDS #49-0207; Figure 2). However, the Li₄Ti₅O₁₂ powders prepared through the wet process had an undesirable (Li-inactive) secondary phase, Li₂TiO₃ (JCPDS #33-0831), even after calcination at 800°C as confirmed by the XRD peak at $2\theta = 35.6$ °. As opposed to the powders prepared by the wet process, those prepared through the solid-state process showed an almost pure Li₄Ti₅O₁₂ phase with negligible secondary phases.

Figures 3a, b show the typical FESEM and HRTEM images of the ${\rm Li_4Ti_5O_{12}}$ powders prepared through the solid-state process. Small and uniformly sized ${\rm Li_4Ti_5O_{12}}$ particles (50 to 100 nm) were obtained even if the calcination temperature was 700°C, which could be attributed to the unique ${\rm TiO_2}$ nanoprecursors with extremely large surface areas. These ${\rm Li_4Ti_5O_{12}}$ powders were further investigated by HRTEM, as shown in Figure 3c. The typical HRTEM image was recorded from a single particle with lattice fringes of approximately 0.496 nm, which corresponded to the (111) interplanar spacing in ${\rm Li_4Ti_5O_{12}}$. The presence of single-phase ${\rm Li_4Ti_5O_{12}}$ was also confirmed from the SAED patterns shown in the inset of Figure 3c.

Nanostructured electrode materials help in enhancing the performance of Li-ion batteries by providing higher electrode/electrolyte contact areas, shorter Li⁺ diffusion lengths (L) in the intercalation host (smaller time constant (τ) ; $\tau = L^2/2D$, where D is the coupled diffusion coefficient for Li⁺ and e⁻), and better accommodation of the Li-ion insertion/extraction strain [8,9]. Figure 4 shows the electrochemical activity of nano-Li₄Ti₅O₁₂ powders that were prepared through the solid-state process. These CV measurements were carried out during the first cycle using a half cell with Li metal foil as the negative electrode, operating at 0.3 mV/s. Clear cathodic and anodic peaks appeared at approximately 1.46 and 1.7 V, respectively, for the Li intercalation/deintercalation, in accordance with the pair of peaks reported for Li₄Ti₅O₁₂ powders [10]. The following electrochemical reaction of Li₄Ti₅O₁₂ with Li has been suggested [11]:

$$\text{Li}_4\text{Ti}_5\text{O}_{12} + 3 \text{Li}^+ + 3 \text{e}^- \leftrightarrow \text{Li}_7\text{Ti}_5\text{O}_{12}.$$

Figure 1 Characterization of TiO₂ products. (a) A typical XRD pattern. (b) A TEM image of TiO₂ precursor powders. The inset in (b) shows SAED patterns. (By Jin YH et al.).

Figure 4b shows the galvanostatic cycling characteristics of nano-Li $_4$ Ti $_5$ O $_{12}$ powders that were prepared through the solid-state process. The first discharge capacity was 154 mAh g $^{-1}$ over a voltage window of 1.0 to 2.5 V at a current rate of 1 C (175 mAh g $^{-1}$; here, C is defined as three Li ions per hour and per formula unit of Li $_4$ Ti $_5$ O $_{12}$ on the basis of the above equation). The reversible capacities were observed to be 135, 133, 131, 130, and 128 mAh g $^{-1}$ after 100, 200, 300, 400, and 500

cycles, respectively. Indeed, it is interesting to note that the nano-Li $_4$ Ti $_5$ O $_{12}$ electrode in this study shows superior long-term cyclability and negligible variation in reversible capacity upon cycling (0.013% fading per cycle between 100 and 500 cycles).

Figure 5 shows the rate capability of the nano-Li₄Ti₅O₁₂ powders that were prepared through the solid-state process, for up to 20 C. The cells were charged and discharged at 1 C for the first 10 cycles, and then, the

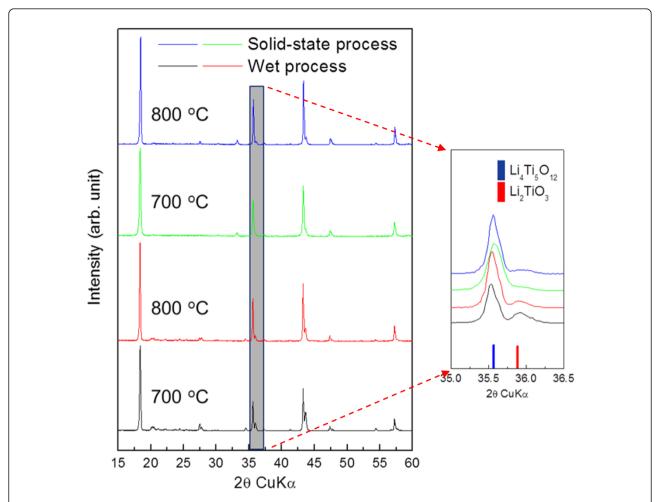
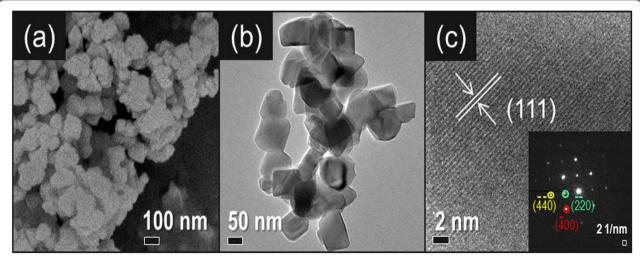
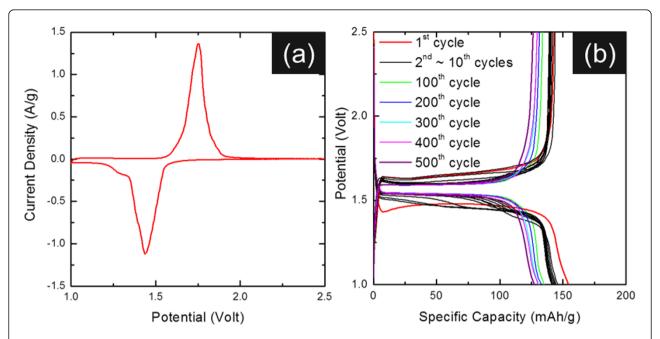




Figure 2 XRD patterns of Li₄Ti₅O₁₂ powders. Li₄Ti₅O₁₂ prepared through wet and solid-state processes and subsequently calcined at 700°C and 800°C for 4 h. (By Jin YH et al.).

Figure 3 FESEM and HRTEM images. (a) FESEM image of a typical $\text{Li}_4\text{Ti}_5\text{O}_{12}$. (b) Low-magnification HRTEM image of $\text{Li}_4\text{Ti}_5\text{O}_{12}$. (c) HRTEM image of $\text{Li}_4\text{Ti}_5\text{O}_{12}$ powders prepared through the solid-state process and subsequently calcined at 700°C for 4 h. The inset in (c) shows SAED patterns. (By Jin YH et al.).

Figure 4 Electrochemical performance of Li₄Ti₅O₁₂. (a) A cyclic voltammogram of Li₄Ti₅O₁₂. (b) Charge-discharge profiles of Li₄Ti₅O₁₂ powders prepared through the solid-state process and subsequently calcined at 700°C for 4 h. (By Jin YH et al.).

Figure 5 Rate capability of Li₄Ti₅O₁₂. Cycling behavior at different C values for Li₄Ti₅O₁₂ powders prepared through the solid-state process and subsequently calcined at 700°C and 800°C for 4 h. Solid and open circles indicate discharge and charge capacities, respectively. (By Jin YH et al.).

rate was increased in stages to 20 C. At a rate of 20 C, the capacity of the nano-Li $_4$ Ti $_5$ O $_{12}$ powders was still high: 112 mAh g $^{-1}$. This outstanding performance at high rates was much better than that afforded by any of the various types of Li $_4$ Ti $_5$ O $_{12}$ nanostructures such as nanowires and nanoparticles [3,12,13]. In particular, the nano-Li $_4$ Ti $_5$ O $_{12}$ powders calcined at 700°C exhibited better long-term cyclability as well as superior rate capabilities than those calcined at 800°C (Figure 5), possibly a result of the nanosize effect of the small particle size and large surface area.

Conclusion

In summary, spinel-type nano-Li $_4$ Ti $_5$ O $_{12}$ particles were synthesized by a solid-state process from a large-surface-area TiO $_2$ precursor and subsequent calcination at 700°C. The average particle size of these nano-Li $_4$ Ti $_5$ O $_{12}$ particles was 50 to 100 nm. High Li electroactivity was confirmed by CV experiments. The nano-Li $_4$ Ti $_5$ O $_{12}$ particles calcined at 700°C showed a high Li storage capacity of 128 mAh g $^{-1}$ after 500 cycles at 1 C and superior cycle performance (112 mAh g $^{-1}$) even at a high rate of 20 C. The enhanced reversible capacity and cycling performance were attributed to the formation of highly crystalline, uniform nanoparticles, which make this nano-Li $_4$ Ti $_5$ O $_{12}$ a potential host material for high-powder Li-ion batteries.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST; No. 2010-0029617 & 2011-0005776) and was completed with Ajou University Research Fellowship of 2011 (S-2011-G0001-00070).

Authors' contributions

Y-HJ carried out the ${\rm TiO_2}$ and ${\rm Li_4Ti_5O_{12}}$ sample preparation and drafted the manuscript. K-MM and H-WS fulfilled the electrochemical analyses. S-DS, I-SH, and K-SP participated in the microstructural analysis. D-WK designed the study, led the discussion of the results, and participated in writing the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 2 September 2011 Accepted: 5 January 2012 Published: 5 January 2012

References

- Jiang C, Ichihara M, Honma I, Zhou H: Effect of particle dispersion on high rate performance of nano-sized Li₄Ti₅O₁₂ anode. Electrochimica Acta 2007, 52:6470
- Kavana L, Grätzel M: Facile synthesis of nanocrystalline Li₄Ti₅O₁₂ (spinel) exhibiting fast Li insertion. Electrochem Solid-State Lett 2002, 5:A39.
- Li J, Tang J, Zhang Z: Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li₄Ti₅O₁₂. Electrochem Commun 2005, 7:894.
- Ju SH, Kang YC: Characteristics of spherical-shaped Li₄Ti₅O₁₂ anode powders prepared by spray pyrolysis. J Phys Chem Solids 2009, 70:40.
- Yuan T, Cai R, Wang K, Ran R, Liu S, Shao Z: Combustion synthesis of high-performance Li₄Ti₅O₁₂ for secondary Li-ion battery. Ceram Int 2009, 35:1757

- Ferg E, Gummow RJ, de Kock A, Thackeray MM: Spinel anodes for lithiumion batteries. J Electrochem Soc 1994, 141:L147.
- Jin YH, Lee SH, Shim HW, Ko KH, Kim DW: Tailoring high-surface-area nanocrystalline TiO₂ polymorphs for high-power Li ion battery electrodes. Electrochimica Acta 2010. 55:7315.
- Kunduraci M, Amatucci GG: The effect of particle size and morphology on the rate capability of 4.7 V LiMn_{1.5+8}Ni_{0.5-8}O₄ spinel lithium-ion battery cathodes. Electrochimica Acta 2008, 53:4193.
- Ren Y, Armstrong AR, Jiao F, Bruce PG: Influence of size on the rate of mesoporous electrodes for lithium batteries. J Am Chem Soc 2010, 132:996.
- Woo SW, Dokko K, Kanamura K: Preparation and characterization of three dimensionally ordered macroporous Li₄Ti₅O₁₂ anode for lithium batteries. Electrochimica Acta 2007, 53:79.
- Ohsuku T, Ueda A, Yamamoto N: Zero-strain insertion material of Li[Li₁/₃Ti_{5/3}]O₄ for rechargeable lithium cells. J Electrochem Soc 1995, 142:1431.
- Lee DK, Shim HW, An JS, Cho CM, Cho IS, Hong KS, Kim DW: Synthesis of heterogeneous Li₄Ti₅O₁₂ nanostructured anodes with long-term cycle stability. Nanoscale Res Lett 2010, 5:1585.
- Lee SS, Byun KT, Park JP, Kim SK, Kwak HY, Shim IW: Preparation of Li₄Ti₅O₁₂ nanoparticles by a simple sonochemical method. Dalton Trans 2007, 37:4182.

doi:10.1186/1556-276X-7-10

Cite this article as: Jin et al.: Facile synthesis of nano-Li $_4$ Ti $_5$ O $_{12}$ for high-rate Li-ion battery anodes. Nanoscale Research Letters 2012 7:10.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com