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Abstract

The surface morphology of Ge0.96Sn0.04/Si(100) heterostructures grown at temperatures from 250 to 450°C by
atomic force microscopy (AFM) and scanning tunnel microscopy (STM) ex situ has been studied. The statistical data
for the density of Ge0.96Sn0.04 nanodots (ND) depending on their lateral size have been obtained. Maximum density
of ND (6 × 1011 cm-2) with the average lateral size of 7 nm can be obtained at 250°C. Relying on the reflection of
high energy electron diffraction, AFM, and STM, it is concluded that molecular beam growth of Ge1-xSnx
heterostructures with the small concentrations of Sn in the range of substrate temperatures from 250 to 450°C
follows the Stranski-Krastanow mechanism. Based on the technique of recording diffractometry of high energy
electrons during the process of epitaxy, the wetting layer thickness of Ge0.96Sn0.04 films is found to depend on the
temperature of the substrate.

Introduction
Self-assembled Ge-Sn nanodots (ND) are considered to
be a possible candidate for direct band gap materials and
have high potential for a variety of applications due to
their compatibility with Si technology [1,2]. Ge-Sn ND
have been grown on Si substrates by methods of molecu-
lar beam epitaxy (MBE) covered with ultrathin SiO2 films
[3,4]. A quantum-confinement effect in individual Ge1-
xSnx ND on Si(111) surfaces covered with ultrathin SiO2

films was observed using scanning tunneling spectro-
scopy at room temperature [5]. Strong 1.5 μm photolu-
minescence from Si-capped Ge1-xSnx ND on Si(100)
surfaces has also been observed by Nakamura et al. [3].
The epitaxial growth of Ge1-xSnx alloys is complicated

because of a big lattice mismatch (15%) between Sn and
Ge, small equilibrium solid solubility of Sn in Ge (< 0.5 at.
%), and a tendency for Sn surface segregation [6-8]. MBE
as a non-equilibrium growth technique can overcome the
former two difficulties, but the surface segregation of Sn
still occurs at typical growth temperatures more than 300°
C [6,9], especially for higher Sn concentration growth.
Until now, the initial stages of the epitaxial process of

Ge-Sn layers on clean Si(100) surfaces from molecular

beams have been scarcely reported in the literature. In
particular, the growth mechanism has not been investi-
gated. However, the growth processes in heterosystem
Ge1-xSix/Si(100) have been studied sufficiently. The epi-
taxy of germanium on silicon surfaces (100) turned out
to follow the Stranski-Krastanow (SK) mechanism [10].
The SK model supposes that a uniformly strained film
(the wetting layer) grows pseudomorphically on the sub-
strate below some thickness of Ge or Ge1-xSix. As its
thickness increases, the islands appear on the wetting
layer. Hut-clusters with faceted planes of the type {510}
followed by dome-clusters with faceted {311} and {201}
planes originate [11].
The technique of reflection of high energy electron

diffraction (RHEED) has been used to monitor the evo-
lution of the surface structure during the growth of the
solid solution Ge0.96Sn0.04 on Si(100). RHEED is the
most informative method of investigating in situ MBE
heterostructures. As well as the previous researches [12],
the authors analyzed the intensity of RHEED patterns in
the growth of Ge-Sn layers. The analysis allows us to
measure the wetting layer thickness [i.e., the thickness
at which transition from two- (2D) to three-dimensional
(3D) growth takes place] depending on the growth
temperature.
The purpose of this article is to study the initial grow-

ing stages of Ge-Sn alloys on Si(100) surfaces and the
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distribution of Ge-Sn ND at the temperature range from
150 to 450°C by the technique of RHEED in situ, atomic
force microscopy (AFM), and scanning tunnel micro-
scopy (STM) ex situ.

Experimental details
Samples were grown by using a solid-source MBE
machine with two pyrolitic boron nitride Knudsen source

cells for evaporation of germanium and tin, as well as by
an electron beam evaporator for silicon. Analytic equip-
ment in the growth chamber included a quartz thickness
monitor and a high energy electron (20 kV) diffractometer.
Diffraction patterns were performed during the growth by
using CCD camera which permitted us to have both
RHEED images on the whole and the fragments of the dif-
fraction patterns at the rate of 10 frames per second. Ge
growth rate was 0.09 nm/s, and Sn growth rate was equal
to 3.8 × 10-4 nm/s, which gave us the molecular beams in
proportion equal to 4 at.% of Sn in Ge-Sn solid solution.
Here, 4 at.% of Sn were chosen because of the large lattice
mismatch among a-Sn (a = 0.6489 nm), Ge (a = 0.5658
nm), and Si (a = 0.5431 nm). The lattice parameter mis-
match between Ge0.96Sn0.04 and Si is 4.8% theoretically,
which is close in magnitude to a similar parameter of the
well-studied heterostructure Ge/Si(100). The temperature
of the substrates was changed from 150 to 450°C. Silicon
(100) substrates were less than 0.5° disoriented. Before the
Ge-Sn film started growing, the Si substrate was annealed
at 1000°C, and the buffer Si layer was grown at 700°C. The
micromorphology of the grown surfaces was studied by
methods of AFM and STM ex situ.

Results and discussion
The diffraction patterns at the growth process of Ge and
Ge0.96Sn0.04 films on Si(100) were similar. At the first stage
of epitaxial growth, the authors observed the diffraction
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Figure 1 The dependence of 2D-3D transition thickness during
the epitaxy of the Ge0.96Sn0.04 film on the substrate
temperature in the range of 150-450°C.

Figure 2 AFM image from wetting layer Ge0.96Sn0.04 with 0.33 nm thickness, grown at 350°C.
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Figure 3 (a) STM image (200 × 200 nm2) from the Ge0.96Sn0.04 film with 1.08 nm thickness, grown at 250°C. (b) The dependence of
quantity ND on the lateral size.
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Figure 5 (a) AFM image (2 × 2 μm2) from the Ge0.96Sn0.04 film with 1.58 nm thickness, grown at 450°C. (b) The dependence of quantity
ND on the lateral size.
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Figure 4 (a) AFM image (1 × 1 μm2) from the Ge0.96Sn0.04 film with 1.58 nm thickness, grown at 350°C. (b) The dependence of quantity
ND on the lateral size.
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pattern from flat surfaces of the wetting layer and found
the pattern to become 3D after the Ge0.96Sn0.04 layer has
grown a few nm larger. By the diffractometry of high
energy electrons during the process of epitaxy, the critical
thickness can be determined, i.e., the thickness of transi-
tion from the 2D growth mode to the 3D growth mode
for the heterostructures of Ge0.96Sn0.04/Si(100), which
depends on the growth temperature of substrates. The
dependence of 2D-3D transition thickness during the epi-
taxy of Ge0.96Sn0.04 film on the substrate temperature in
the range of 150-450°C is shown in Figure 1. It can be
seen that the temperature dependence has a non-mono-
tonic character with the minimum at 350°C.
Moreover, the oscillations of specular beam of diffrac-

tion pattern were not observed during the growth in all
the investigated temperature ranges, i.e., 150-450°С. It
means that the Ge-Sn films grow by the moving atomic
steps on the surface. The result of RHEED was also sup-
ported by the AFM and STM measurements. Our MBE
system allows one to grow four films with different thick-
nesses from the wetting layer, and three films with a
higher thickness in one process on the same substrate.
The micromorphology of all the grown films was studied
by AFM and STM. Before 2D-3D transition, one has the
flat wetting layer at all substrate temperatures. The wet-
ting layers contain the atomic steps with the edge orien-
tation < 110 >. The typical AFM image of this layer with
0.33 nm thickness is shown in Figure 2. It shows that the
root mean square is equal to 0.0955 nm at 350°C.
So far, the nature of nonmonotonic temperature

dependence of transition 2D-3D thickness is not clear.
It was shown in the article [13], that the mobility of Ge
atoms on the Si(111) surface increases by several orders
of magnitude with a Sn coverage of about one mono-
layer. Owing to this fact, the Ge0.96Sn0.04 films seem to

grow by the moving atomic steps at relatively low
growth temperatures. As long as Sn atoms in growing
surfaces act as surfactants for Ge adatoms, the surface
diffusion of Ge atoms on a Si(100) surface will increase.
The quantity of Sn atoms at growing surfaces may
increase because of the effect of Sn segregation. The
characteristics of segregation and temperature depen-
dence of Sn segregation during the growth process of
the Ge-Sn film are not found in literature.
The 2D RHEED patterns correspond to the flat wet-

ting layer (see Figure 2). The diffraction patterns with
3D spots correspond to AFM images with Ge-Sn
islands. The typical STM and AFM pictures are shown
in Figures 3, 4, 5. The dependence of ND quantity on
the lateral size was calculated for all images. Maximum
density of ND (6 × 1011 cm-2) with the average lateral
size of 7 nm was obtained at 250°C.
The dependence of ND of average-size and their density

on the growth temperatures is depicted in Figure 6. It can
be seen that the average size increases, and the density of
ND decreases as the growth temperature increases. The
relationship of height to lateral size with the lateral size of
ND is shown in Figure 7. This aspect ratio for Ge ND
deposited on Si(100) surface is widely reported in the lit-
erature. For hut clusters, the aspect ratio is equal to 0.1-
0.2 [14,15]. ND grown at the substrate temperature of
250°C have a similar aspect ratio 0.08-0.13 (see Figure 7).
It is also found that the Ge0.96Sn0.04 ND at low tempera-
ture of epitaxy have a shape similar to the Ge hut cluster.
The nanoislands grown at higher temperatures of the sub-
strate (350-450°C) had a bigger lateral size from 30 to 110
nm and the aspect ratio of ND changed from 0.10 to 0.21.
These data characterized the ND with the shape similar to
the one of the dome Ge cluster.
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Figure 6 The dependence of average size of ND and their
density on substrate temperatures.
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Figure 7 The dependence of relation of height to lateral size
on the lateral size of ND. Lateral size is equal to square root of the
base area.
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Conclusion
From the data on RHEED, AFM, and STM, it is concluded
that molecular beam growth of Ge1-xSnx heterostructures
with the small concentrations of Sn in the range of sub-
strate temperatures from 150 to 450°C follows the SK
mechanism. By the method of recording diffractometry of
high energy electrons during the process of epitaxy, the
wetting layer thickness of Ge0.96Sn0.04 films is found to
depend on the temperature of the substrate. The micro-
morphology of the Ge0.96Sn0.04/Si(100) heterostructures
surface has been investigated in the range of substrate
temperatures from 250 to 450°C by AFM and STM ex
situ. Maximum density of ND (6 × 1011 cm-2) with the
average lateral size of 7 nm has been obtained at 250°C.

Abbreviations
AFM: atomic force microscopy; MBE: molecular beam epitaxy; ND: nanodots;
RHEED: reflection of high energy electron diffraction; SK: Stranski-Krastanow;
STM: scanning tunnel microscopy.
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