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Abstract

We analyze the effect of doping on photoelectron kinetics in quantum dot [QD] structures and find two strong
effects of the built-in-dot charge. First, the built-in-dot charge enhances the infrared [IR] transitions in QD
structures. This effect significantly increases electron coupling to IR radiation and improves harvesting of the IR
power in QD solar cells. Second, the built-in charge creates potential barriers around dots, and these barriers
strongly suppress capture processes for photocarriers of the same sign as the built-in-dot charge. The second effect
exponentially increases the photoelectron lifetime in unipolar devices, such as IR photodetectors. In bipolar devices,
such as solar cells, the solar radiation creates the built-in-dot charge that equates the electron and hole capture
rates. By providing additional charge to QDs, the appropriate doping can significantly suppress the capture and
recombination processes via QDs. These improvements of IR absorption and photocarrier kinetics radically increase
the responsivity of IR photodetectors and photovoltaic efficiency of QD solar cells.

Keywords: quantum dot, infrared photodetector, solar cell, photoresponse, doping, potential barrier, capture
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Introduction
One of the main goals for the next generation of infrared
[IR] imaging systems and solar cell photovoltaic devices is
to increase the photoresponse to IR radiation [1]. To
enhance the IR photoresponse, it is necessary to (1)
improve electron coupling to IR radiation and (2) increase
the photocarrier lifetime, i.e., to suppress recombination
losses. However, it is not easy to increase IR absorption
without enhancement of recombination losses because by
introducing electron levels, which provide strong IR tran-
sitions, we inevitably create additional channels for inverse
processes that increase recombination losses.
This trade-off between IR absorption and recombination

processes are well understood for a number of technolo-
gies and corresponding materials. For example, in the
early 1960s, semiconductors with impurities which provide
electron levels inside a semiconductor bandgap and induce
IR transitions from localized impurity states to conducting
states received significant attention. However, midgap
impurities drastically enhance the recombination

processes, i.e., the Shockley-Read-Hall recombination, and
deteriorate the photovoltaic conversion efficiency [2,3].
To accommodate the solar spectrum and utilize its IR

portion, modern photovoltaic technology mainly employs
multi-junction cells with different bandgaps [4]. In these
devices, each p-n junction cell is designed to effectively
harvest solar energy within a certain spectral window close
to the bandgap. According to theoretical modeling, in a
multi-junction solar cell with five or more junctions, the
ultimate photovoltaic efficiency may exceed 70%. How-
ever, current technology enables only triple-junction cells
(Ge-substrate junction-InGaAs-AlInGaP) with the maxi-
mum conversion efficiency of approximately 42% for con-
centrator cells. Strong technological limitations are caused
by the need for lattice match, thermal expansion match,
and current match in the cascade of heterojunctions [5,6].
Quantum-well structures are intensively investigated for

applications in IR imaging and solar energy conversion.
Some enhancement in conversion efficiency was observed
in solar cells, based on planar quantum wells, due to
increased resonance absorption. Quantum-well IR sensing
is currently a well-established technology, which is widely
used for detection and imaging at liquid nitrogen tempera-
tures and below. However, at higher temperatures, the
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photoresponse tremendously decreases due to a strong
reduction of photocarrier lifetime.
Recently, quantum-dot [QD] structures have attracted

much attention due to their ability to enhance absorption
of IR radiation via multiple energy levels introduced by
QDs [7-9]. In QDs, the carriers are confined in all three
dimensions. Electron states in separate dots can be con-
nected via manageable tunneling coupling between QDs.
Therefore, QD media provide numerous possibilities for
nanoscale engineering of electron spectra by varying the
dot size and shape as well as the concentration of QDs
and geometry of a QD structure. Besides tunable IR
absorption, QD structures offer wide flexibility for nano-
engineering of electron processes via the built-in-dot
charge, correlation of dot positions, and selective doping.
The built-in charge induced by selective doping creates
potential barriers around dots and prevents capture of car-
riers of the same sign as the built-in-dot charge.
In very recent works, we have reported a radical

improvement on the responsivity of QD infrared photode-
tectors [QDIP] [10] and QD solar cell efficiency [11] due
to strong inter-dot doping, which creates substantial built-
in-dot charge. While up to now the incorporation of QDs
improves the solar cell’s performance just by a few percent
[12], we demonstrated that QDs with the built-in charge
of approximately six electrons per dot provide a 50%
increase in photovoltaic efficiency [11]. We also observed
approximately 25 times increase of the photoresponse of
QDIP when the built-in-dot charge increases from one
electron to six electrons per dot [10]. Research on the cap-
abilities of QD media with built-in-dot charge is still far
from completion.
In this work, we investigate the physical processes

behind these radical improvements. We study the poten-
tial relief created by the built-in-dot charge and calculate
potential barriers, which separate the conducting states in
the media from the localized QD states. Taking into
account the effects of the built-in-dot charge on the IR
absorption and photoelectron kinetics, we propose a sim-
ple model, which adequately describes effects of doping on
the operation of unipolar optoelectronic QD devices, such
as QDIPs. We also analyze our data related to the opera-
tion of a QD solar cell and present basic contours of the
model for the description of doping-induced effects in the
kinetics of bipolar photocarriers in QD structures. We
conclude that in both cases, the built-in-dot charge
strongly enhances electron coupling to electromagnetic
radiation and suppresses the most effective capture pro-
cesses. These two factors allow us to improve the perfor-
mance of QDIPs and QD solar cells.

Unipolar kinetics in QD structures: IR photodetectors
To investigate the effects of the built-in-dot charge on the
unipolar kinetics in QD photodetectors, we investigate

anisotropic potential barriers in real QD structures used
for IR sensing. Our QD structures have been fabricated
using molecular beam epitaxy with growth temperatures
of 500 ± 10°C. InAs dots were grown on AlGaAs surfaces
by deposition of approximately 2.1 monolayers of InAs.
During the normal growth of layers, the substrate was
rotated at 30 RPM to insure the uniform thickness of the
layers. The thickness of GaAs spacer between the QD
layers was chosen large enough to minimize the strain.
The obtained structures were doped in two different ways:
with intra-dot doping (devices B44 and B52) and with
inter-dot doping (devices B45 and B53). In devices B44
and B52 (Figure 1a), the dopant sheet concentration was
2.7 × 1011 cm-2 and 5.4 × 1011 cm-2, respectively. Devices
B45 and B53 have been grown with Si dopants directly in
the middle of each AlGaAs barrier layer (Figure 1b). In
devices B45 and B53, the dopant sheet concentration was
also 2.7 × 1011 cm-2 and 5.4 × 1011 cm-2, respectively. QDs
had the truncated pyramid shape with an average of 3.6
nm in height and 15 nm in width. The QDs were ran-
domly distributed over the QD layer. The average distance
between dots was 31 nm which corresponds to the sheet
concentration of 1011 cm-2. Parameters of our samples are
summarized in Table 1. Details of the fabrication techni-
que and other parameters of these devices may be found
in Mitin et al. [10].
To calculate the built-in-dot charge and investigate the

potential profiles around dots, we used the nextnano3

software, which allows for simulation of multilayer struc-
tures combined with different materials of realistic geo-
metries in one, two, and three spatial dimensions [13].
This simulation tool self-consistently solves Schrödinger,
Poisson, and current equations for electrons and holes.
The conduction and valence bands of the structures are
defined within a single-band or multi-band k·p model,
which includes a strain.
The three-dimensional [3-D] potential profile in QD

structures calculated with nextnano3 is shown in Figure 2.
The light black lines denote the preferable channels for
the motion of photoelectrons (white dots) in the potential
relief created by the built-in-dot charge.
We simulated the band structure and potential distri-

bution in real devices taking into account the effects of
contacts. Figure 3 shows variations of the built-in-dot
charge and potential profile in the C-D cross section for
sample B53 with inter-dot doping (for clarity, we pre-
sent it in ten QD layers). As seen, the effect of contacts
is important only for one or two QD layers adjacent to
the contacts. Thus, the built-in-dot charge in QD layers
from the third to the eighth is directly determined by
the inter-dot doping. In Table 1, we present the built-
in-dot charge, which is determined by the number of
captured electrons and number of dopants (in the case
of intra-dot doping).
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As seen in Figure 2, the potential barriers around QDs
are strongly asymmetric. The barriers in the QD planes,
i.e., in the direction perpendicular to the current, are
substantially smaller than the barriers in the direction of
the current. This asymmetry has strong consequences
for the kinetics of photocarriers.
In Figure 4, we compare the potential profiles in the

A-B cross section (x-axis) and in the C-D cross section
(z-axis). Potential barriers in the A-B cross section are
significantly smaller, and therefore, they are presented
with a higher resolution.
Using the nextnano3, we have analyzed the local

potential barriers around single QDs as a function of
the built-in charge. As expected, these local barriers are
independent on the QD position in the device and are
strongly asymmetric because of the asymmetry of the
QD shape. Figure 5 shows the height of local potential
barriers around single dots in directions perpendicular
and parallel to the QD planes as a function of the built-
in-dot charge. Linear character of dependences is
expected. In Figure 5, we highlight the strong anisotropy
of the barriers, which is critically important for capture
processes and photoelectron kinetics.

The photoelectron capture into the charged dot may
be realized either via tunneling through the barrier or
via thermal excitation above the barrier. The relative
probability of these two processes depends on the char-
acteristic size of the dot [14]. At room temperature, if a
dot radius is smaller than approximately 5 nm, the elec-
tron capture by the dot is analogous to the capture by
the repulsive impurity [15]. In this case, the capture rate
is proportional to exp[-(kBT/EB)

1/3], where EB is Bohr’s
energy; EB = 2π2n2e4m/h2�, where n is the number of
electrons captured in a dot, m is the electron mass, and
� is the permittivity [15]. In the opposite case, which is
usually realized in QD structures, the thermally acti-
vated processes dominate over tunneling and the cap-
ture rate follows the exponential dependence [14,16,17]:

1
τcapt

∝ exp
[
−V(Q)

kBT

]
, (1)

where V(Q) is the height of the local potential barrier,
which is a function of the built-in-dot charge Q = enq.
As shown in Figure 5, the height of the potential bar-

rier in the direction parallel to the QD plane is

Figure 1 QD structures. QD structures with intra-dot doping, i.e., doping of QD layers (a) and inter-dot doping, i.e., doping between QD layers (b).

Table 1 QDIP devices

Device B44 B45 B52 B53

Doping Intra-dot Inter-dot Intra-dot Inter-dot

Donor concentration (1011 cm-2) 2.7 2.7 5.4 5.4

Number of electrons in dot, n 2.7 2.8 4.7 6.1

Built-in-dot charge, nq 1.8 2.8 3.45 6.1
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substantially smaller than that in the perpendicular
direction. Therefore, we expect that the capture pro-
cesses in QD planes will dominate in the relaxation pro-
cesses. Based on Figure 5, the corresponding barrier
height is V|| = bnq, where b = 2.5 meV. In the case of
the intra-dot doping, the dot charge nq is equal to the
dot population n reduced by the number of dopants p
in the dot, i.e., nq = n - p. In the case of the inter-dot
doping, the built-in-dot charge q is obviously equal to n.
Thus, based on the above consideration, we expect

that the effects of doping on the photocurrent in QD
structures are described by:

I = A n exp
(
bnq
kBT

)
. (2)

Here, A is some constant which does not depend on dop-
ing. The pre-exponential factor in Equation 2 describes the
increase of the absorption with increasing number of elec-
trons in the dot n. The exponential factor describes the
effect of potential barriers around dots on the photoelec-
tron lifetime. It is proportional to the dot charge nq deter-
mined by the number of electrons and number of dopants
in the dot.
In Figure 6, we apply the analysis of our experimen-

tal data, obtained from Mitin et al. [10], in the frame-
work of this model. For fitting of our experimental
results, we take values of n, determined from self-con-
sistent modeling of potential profile using nextnano3

(see Table 1). As seen, the theoretical modeling (red
circles) is in a very good agreement with the

Figure 2 3-D profile of potential barriers around dots with built-in charge. A-B cross section is along the QD plane, and C-D cross section
is in the direction of the vertical electron transport.
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experimental data (blue squares). From this fitting, the
parameter b was found to be equal to 2.7 meV, which
is in a good agreement with b = 2.5 meV that we
obtained from the independent modeling of the

potential barrier heights (see Figure 5). The red dashed
line shows the modeling results for the inter-dot dop-
ing (n = nq), which was used for samples B45 and B53.
For samples B44 and B52 with the doping of QD

Figure 3 Built-in-dot charge and potential distribution over the sample with ten QD layers.
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layers, the dot charge was formed by the electrons cap-
tured in the dot and dopants placed in the dot. In this
case, n = nq + p and the corresponding red circles are
above the dashed line.

Thus, the proposed relatively simple model provides a
very good description of doping effects on the photore-
sponse of QD structures. We believe that such good
agreement with the experiment evidences that the

  

Figure 4 Potential barriers. Potential barriers around dots at the center of the QD structure in the A-B cross section (x-axis) and in the C-D
cross section (z-axis).
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model adequately takes into account the main effects of
doping on photoelectron kinetics.

Bipolar kinetics: solar cell with built-in-dot charge
The heterostructure solar cells are presently dominating
the market of high-efficiency solar cells. They have a
conversion efficiency of up to 42%, have high degrada-
tion robustness (enables applications in outer space),
and allow for high concentration of solar energy.
Despite the impressive achievements in heterostructure
technologies, the pace of improvement of solar cell effi-
ciency is very slow. It is limited by the following factors:
thermalization losses, losses related to junction and con-
tact voltages, and recombination losses. Multi-junction
solar cells with different bandgaps have been developed
to minimize thermalization losses in heterostructure
solar cells. In these devices, each p-n junction cell is
designed to effectively harvest solar energy within a cer-
tain spectral window close to the bandgap. To date, the
triple-junction cells reach a maximum conversion effi-
ciency of approximately 42%, in the case of concentrator
cells. Technological limitations are determined by the
need to match crystalline lattices, thermal expansion
coefficients, and the most difficult, to match all the
photoinduced currents in the cascade of heterojunctions.

QD structures are considered very promising photovol-
taic nanomaterials due to their ability to extend the con-
version of solar energy into the IR range [7-9]. Up to
now, most of the emphasis has been placed on the QD
solar cell with an intermediate band, which is formed
from discrete QD levels due to tunneling coupling
between QDs. Theoretical calculations predict that the
intermediate-band solar cell can provide an efficiency of
approximately 63%. However, intensive experimental
efforts to improve the performance of intermediate-band
solar cells show limited success. In comparison with a
reference cell, the short-circuit photocurrent of the QD
intermediate-band cells increases only by a few percent
[12]. It is well understood that the addition of QDs signif-
icantly increases the absorption of IR radiation, but
simultaneously, QDs drastically increase recombination
processes. For this reason, the corresponding recombina-
tion losses are hardly compensated by the conversion of
IR radiation. To solve this problem, one should further
suppress the photocarrier capture into QDs.
As we have discussed in the previous section in rela-

tion to QDIP, potential barriers around dots provide an
effective and reliable way to control the photoelectron
processes at room temperatures. However, the bipolar
kinetics of electrons and holes in QD structures is much

Figure 5 Height of potential barriers around single dots in directions perpendicular and parallel to QD planes.
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more complex. The built-in-dot charge suppresses solely
the capture processes of the carriers of the same sign as
the dot charge. Again, this suppression is strong and has
an exponential dependence on the dot charge (Equation
1). Under radiation, in stationary conditions of the
dynamic equilibrium, the built-in-dot charge equates the
capture rates of electrons and holes. Thus, to minimize
recombination losses, the built-in-dot charge should be
used for the suppression of the most effective capture
processes. Here, we investigate this concept and study
the effects of built-in-dot charge on IR harvesting,
recombination, and efficiency of QD solar cells.
For the experimental verification of our suggestions, we

fabricated and investigated p- and n-doped InAs/GaAs
QD solar cells with various doping levels. Figure 7 illus-
trates a typical solar cell with a modulation δ-doped QD
structure in which a plane of dopants is placed in the mid-
dle of each GaAs layer that separates QD layers. These
structures contain 20 stacks of InAs QD layers separated
by GaAs with various dopant sheet densities providing
zero, two, three, four, and six electrons per QD.
The effect of the built-in-dot charge on the capture pro-

cesses has been studied by employing photoluminescence

[PL] measurements. PL in QD solar cells was measured
under short-circuit conditions. To stimulate PL, we used
the 514-nm line from an Argon-ion laser. PL signals from
the samples were measured by an InGaAs detector array.
In Figure 8, we compare the PL from p- and n-doped

samples (four carriers per dot) at 1- and 4-W/cm2 inten-
sities. As seen, p-doping drastically increases PL, which is
realized via recombination processes in QDs. In n-doped
devices, the PL intensity turns out to be approximately
eight times weaker than that in p-doped devices. There-
fore, based on our previous analysis, n-doping should
suppress the fast electron-capture processes, minimize
the recombination losses, and increase the solar cell per-
formance, while p-doping is expected to deteriorate the
photovoltaic efficiency. In other words, to effectively con-
tribute to the photovoltaic conversion, an electron and a
hole should simultaneously escape from the dot. The
energy-level spacing for electrons in QDs is relatively
large. It substantially exceeds the spacing for holes and
thermal energy. For this reason, it is precisely the elec-
tron intra-dot processes which limit the electron-hole
escape from QDs. Thus, it is critically important to
enhance the photoexcitation of electrons rather than

Figure 6 The photocurrent as a function of the built-in-dot charge. The blue squares are for experimental data and the red circles are for
modeling results. The red dashed line is the theoretical dependence for the inter-dot doping.
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holes and at the same time, to suppress the electron-cap-
ture processes.
Efficiency of the photovoltaic conversion in solar cell

devices with the built-in-dot charge has been measured
using a calibrated solar simulator. The corresponding I-V
curves for devices with a built-in-dot charge of two and
six electrons under 1 Sun (AM1.5G) irradiation are pre-
sented in Figures 9a, b, respectively. For comparison, in
Figure 9, we also presented I-V curves for the reference
cell without QDs and for the undoped QD solar cell. As
seen, the short-circuit current increases with doping from
approximately 15 mA/cm2 in the reference cell and
undoped QD cell to 17.5 mA/cm2 for the device with two
electrons per dot and further, to 24 mA/cm2 for the device
with six electrons per dot. As with the conventional solar

cell with a p-n junction, doping also prevents deterioration
of the open-circuit voltage.
The IR harvesting and conversion have been investi-

gated by measurements of the photoresponse under 1
Sun radiation with the GaAs filter which eliminates high-
energy photons with a wavelength less than 880 nm. I-V
characteristics obtained with the GaAs filter are cor-
rected for reflectivity losses and presented in Figure 9. As
seen, the IR photoresponse significantly increases due to
the built-in-dot charge. In the device doped to provide
two electrons per dot, we observe an increase in the
photocurrent of approximately 7.0 mA/cm2 compared
with the reference cell. The photocurrent from the sam-
ple with six electrons per dot increases by approximately
9 mA/cm2. As expected, the GaAs reference cell does not

Figure 7 A schematic layout of a δ-doped QD solar cell.
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show any IR photoresponse. These measurements
directly demonstrate strong harvesting and effective con-
version of IR radiation by solar cells with the built-in-dot
charge.

The basic parameters of our devices with the built-in
charge of two, three, and six electrons per dot are sum-
marized in Figure 10. As seen, the photovoltaic effi-
ciency radically improves due to the built-in-dot charge.

Figure 8 Comparison of PL spectral dependences. Comparison of PL spectral dependences of n- and p-doped samples with four carriers per
dot under an intensity of (a) approximately 1 W/cm2 and (b) approximately 4 W/cm2.
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We have not observed any evidence of saturation of the
effect, and therefore, even higher efficiencies are antici-
pated for higher doping. It should be noted that as it is
done in other research projects [12,18-21], to minimize

the cost, we fabricate test structures, which do not have
antireflection coating and back surface field and are also
relatively short (approximately 1.4 μm). As a result, the
efficiency of our reference cell (without QDs) is less

Figure 9 I-V characteristics of solar cells. I-V characteristics of solar cells with built-in-dot charge of two electrons per dot (a) and six electrons
per dot (b) in comparison with the reference cell (without QDs) and undoped QD solar cell.

Sablon et al. Nanoscale Research Letters 2011, 6:584
http://www.nanoscalereslett.com/content/6/1/584

Page 11 of 13



than the record efficiencies of GaAs solar cells (26%
under unconcentrated light and 29% under concentrated
light). However, the presented data provide strong evi-
dence that QDs with built-in charge can significantly
increase IR harvesting and conversion of light.

Conclusions
Our new approach, based on engineering 3-D potential
barriers introduced by QDs with built-in-dot charge,
provides real opportunities to radically improve the per-
formance of IR photodetectors and solar cells. These
improvements are due to effective harvesting of IR
radiation via intra-band QD transitions and transitions
from QDs to the conducting states in the matrix. Poten-
tial barriers also prevent photoelectron capture and
increase the photoelectron lifetime. Modern technolo-
gies allow for fabrication of specific structures with var-
ious positions/distributions of QDs. This provides
numerous possibilities for engineering very specific 3-D
barriers. We believe that in future electronic and sensing
technologies, the 3-D barriers will be employed in every
device as nowadays, technology employs semiconductor
heterostructures with one-dimensional barriers.
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