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Abstract

the mechanical resonance directly on the chip.

Nanomechanical resonators (NRs) with very high frequency have a great potential for mass sensing with
unprecedented sensitivity. In this study, we propose a scheme for mass sensing based on the NR capacitively
coupled to a Cooper-pair box (CPB) driven by two microwave currents. The accreted mass landing on the
resonator can be measured conveniently by tracking the resonance frequency shifts because of mass changes in
the signal absorption spectrum. We demonstrate that frequency shifts induced by adsorption of ten 1587 bp DNA
molecules can be well resolved in the absorption spectrum. Integration with the CPB enables capacitive readout of

1 Introduction
Nanoelectromechanical systems (NEMS) offer new pro-
spects for a variety of important applications ranging
from semiconductor-based technology to fundamental
science [1]. In particular, the minuscule masses of
NEMS resonators, combined with their high frequencies
and high resonance quality factors, are very appealing
for mass sensing [2-7]. These NEMS-based mass sensing
employs tracking the resonance frequency shifts of the
resonators due to mass changes. The most frequently
used techniques for measuring the resonance frequency
are based on optical detection [8]. Though inherently
simple and highly sensitive, this technique is susceptible
to temperature fluctuation noise because it usually gen-
erates heat and heat conduction. On the other hand, it
has experimentally been demonstrated that capacitive
detection is less affected to noise than optical detection
in ambient atmosphere [9]. Capacitive detection is rea-
lized by connecting NEMS resonator with standard
microelectronics, such as complementary metal-oxide-
semiconductor (CMOS) circuitry [10]. Here, we propose
a scheme for mass sensing based on a coupled nanome-
chanical resonator (NR)-Cooper-pair box (CPB) system.
The basic superconducting CPB consists of a low-
capacitance superconducting electrode weakly linked to
a superconducting reservoir by a Josephson tunnel
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junction. Owing to its controllability [11-14], a CPB has
been proposed to couple to the NR to drive an NR into
a superposition of spatially separated states and probe
the decay of the NR [15], to prepare the NR in a Fock
state and perform a quantum non-demolition measure-
ment of the Fock state [16], and to cool the NR to its
ground state [17]. Recently, this coupled CPB-NR sys-
tem has been realized in experiments [18,19] and the
resonance frequency shifts of the NR could be moni-
tored by performing microwave (MW) spectroscopy
measurement. Based on the above-mentioned achieve-
ments, in this article, we investigate the signal absorp-
tion spectrum of the CPB qubit capacitively coupled to
an NR in the simultaneous presence of a strong control
MW current and a weak signal MW current. Theoreti-
cal analysis shows that two sideband peaks appear at the
signal absorption spectrum, which exactly correspond to
the resonance frequency of the NR. Therefore, the
accreted mass landing on the NR can be weighed pre-
cisely by measuring the frequency shifts because of mass
changes of the NR in the signal absorption spectrum.
Similar mass sensing scheme has been proposed recently
in a hybrid nanocrystal coupled to an NR by our group
[20], which is based on a theoretical model. However,
recent experimental achievements in the coupled CPB-
NR system [18,19] make it possible for our proposed
mass sensing scheme here to be realized in future.

© 2011 Jiang et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.


mailto:zhukadi@sjtu.edu.cn
http://creativecommons.org/licenses/by/2.0

Jiang et al. Nanoscale Research Letters 2011, 6:570
http://www.nanoscalereslett.com/content/6/1/570

Page 2 of 8

B o W=
a)f > >

I

Figure 1 Schematic diagram of an NR capacitively coupled to a CPB. Two MW currents with frequency w. and w, and a direct current /,
are applied in the MW line to control the magnetic flux @, through the CPB loop.

2 Model and theory

In our CPB-NR composite system shown schematically
in Figure 1, the NR is capacitively coupled to a CPB
qubit consisting of two Josephson junctions which form
a SQUID loop. A strong control MW current and a
weak signal MW current are simultaneously applied in a
MW line through the CPB to induce the oscillating
magnetic fields in the Josephson junction SQUID loop
of the CPB qubit. Besides, a direct current [, is also
applied to the MW line to control the magnetic flux
through the SQUID loop and thus the effective Joseph-
son coupling of the CPB qubit. The Hamiltonian of our
coupled CPB-NR system reads:

H = Hcpg + Hnr + Hing, (1)
1 1 T D,(t

Hcpp = 2hwq6z - 2EJo cos [ ‘Pxo( )] Oy, (2)

HNR = hwnaTa, (3)

Hine = hi(a’ + a)o. (4)

where Hcpp is the Hamiltonian of the CPB qubit
described by the pseudospin -1/2 operators ¢, and 0, = ¢
+ + 0. wq = 4E.(2n4 - 1)/ is the electrostatic energy dif-
ference and Ej is the maximum Josephson energy. Here,
Ec = €°/2C5 is the charging energy with Cx = Cy, + Cg +
2Cy being the CPB island’s total capacitance and n, =

(Cp Vi, + C4gVy)/(2e) is the dimensionless polarization
charge (in units of Cooper pairs), where Cy, and V}, are,
respectively, the capacitance and voltage between the NR
and the CPB island, C, and V; are, respectively, the gate
capacitance and voltage of the CPB qubit, and Cj is the
capacitance of each Josephson junction. Displacement
(by x) of the NR leads to linear modulation of the capaci-
tance between NR and CPB, Cy(x) ~ C,(0) + (0Cp/0x)x,
which modulates the electrostatic energy of the CPB
qubit, resulting in the capacitive coupling constant

4nNRE NR
3 1 0G, \%
A b Y ox ng Cb b/ze

Axzp = \/ h/2mw, is the zero-point uncertainty of the NR
with effective mass m and resonance frequency w,,. The
coupling between the MW line and the CPB qubit in the
second term of Equation 2 results from the totally exter-
nally applied magnetic flux @,(¢) = @4(¢t) + @, through
the CPB qubit loop of an effective area S with @, = /1/(2e)
being the flux quantum. Here, @(£) = uoSI(t)/(27r), with
r being the distance between the MW line and the qubit
and y, being the vacuum permeability. @4(t) and @}, are
controlled, respectively, by the MW current
I(t) = Eccos(wt) + Escos(wst +8") and the direct current
I, in the MW line. For convenience, we assume the phase
factor 6’ = 0 because it is not difficult to demonstrate that
the results of this article are not dependent on the value
of ¢’. By adjusting the direct current /;, and the MW cur-
rent I(t) such that @, > @ (t) and 7Py,/D, = 7 /2, we

can obtain Fjcos [”i’“o(t)] ~ —E]”Z“L(t).

where and

Ay

In a rotating
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frame at the control frequency ., the total Hamiltonian
can now be written as

H= ;hAaZ +hopa’a + h)\(cfr +a)oz +hQ(o, +0_) 5)

+1E(o,e P + o_eh),

where A = oq - @, is the detuning of the qubit reso-
nance frequency and the control current frequency, ¢ =
g - o, is the detuning of the signal current and the
control current, y = poSEjo/(8r®) is the effective ‘elec-
tric dipole moment’ of the qubit, and §2 = u&/h is the
effective ‘Rabi frequency’ of the control current.

The dynamics of the coupled CPB-NR system in the
presence of dissipation and dephasing is described by
the following master equation [21]

dp

i 1 y 1
Qi —h[H,p] + T, Llo_]+ 2£[a] + 4, Lloz], (6)

where p is the density matrix of the coupled system,
T, is the qubit relaxation time, 7, is the qubit pure
dephasing time, and y is the decay rate of the NR which
is given by ¥ = »,/Q. L|D], describing the incoherent
decays, is the Lindblad operator for an operator and is
given by:

L[D] = 2DpD" — D'Dp — pD'D. (7)

Using the identity (O) = Tr(Op) for an operator O and
a density matrix p in Equation 6, we obtain the follow-
ing Bloch equations for the coupled CPB-NR system:

_ 1
dlo-) _ —( +iA) (o) —i(Qo_) +i2(cy)
dt T,
l. | ®)
) uE(oz)e ™,
d{o, 1 )
<; ) =—_ (o) +1) —2i2({0,) — (0-))
t T )
2, u(Edoe ™ = (o )e™),
a*(Q) dQ 3
- _ 10
i +y gt + w0 (Q) 4w; Lo (07), (10)
where Ag = 2,22 and T, is the qubit dephasing time
satisfying
1 B 1 1 1
T2 - 2T1 " ‘L'¢. ( )

Note that if the pure dephasing rate is neglected, i.e.,

1

o 0, then T, = 2T;. In order to solve the above
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equations, we first take the semiclassical approach by
factorizing the NR and CPB qubit degrees of freedom, i.
e, (Qo.) = (Q) (0.), which ignores any entanglement
between these systems. For simplicity, we define p = uo.
, k = 0, and then we have

Ww2kE

dp ~ 1 . i

0 |:—T2 —I(A+<Q>):|p+l h’ (12)

de 1 4 *

g =", Ger D= M), 13
2

EQ Qo) - arewt (14)

dr? iR dt ’

where & = &, + Ee ™. In order to solve the above
equations, we make the ansatz (p(£)) = po + p1e”" + p.
1%, k() = ko + kie™ + ke, and (Q(®) = Qo + Qi€
it 1 Q.1€”" [22]. Upon substituting these equations into
Equations 12-14 and upon working to the lowest order
in & but to all orders in &, we obtain in the steady
state:

_ WPEToko 2T1/TyB(80 + 2i)(C + £27) + E(B — 80) (15)
="y AE(B — 8) '
where
A= AC - 4)&0&)0}20 - 80 - i,
B= AC - 4)\0&)0’20 + 80 + i,
C= 4)‘Ow0k077952/(Ac — 4)\00)01’&’0 — l), (16)

D= 4)»00)0;2077962/(AC — 4)\00)01’&’0 + l),
E=2T/TLA(D + £22) — 2T, /T,B(C + 222)
— AB(Tl/T280 + l)

Here, dimensionless variables wg = ®,T5, Yo = Y12, Q.
= AT,, and A, = AT, are introduced for convenience
and the auxiliary function

2
@

n= (17)

(,Ug — i)/050 — 8(2) '

The population inversion kj of the CPB is determined
by

T
(ko + 1)[(Ac — 4howoko)? + 1] + 4822kg Tl =0. (18)
2

p1 is a parameter corresponding to the linear suscept-
ibility (M (wy) = p1/& = (1?T2/h)x (), where the
dimensionless linear susceptibility y(wy) is given by

2Ty /T2B(8o + 2i)(C + £22) + E(B — 80)

AB(B 5] ko.(19)

x ()
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The real and imaginary parts of y(w,) characterize,
respectively, the dispersive and absorptive properties.

The coupled CPB-NR system has been proposed to
measure the vibration frequency of the NR by calculat-
ing the absorption spectrum [23]. On the other hand,
NRs have widely been used as mass sensors by measur-
ing the resonant frequency shift because of the added
mass of the bound particles. The mass sensing principle
is simple. NRs can be described by harmonic oscillators
with an effective mass m.g, a spring constant &, and a
mechanical resonance frequency w, = \/k/meff. When a
particle adsorbs to the resonator and significantly
increases the resonator’s effective mass, therefore, the
mechanical resonance frequency reduces. Mass sensing
is based on monitoring the frequency shift Aw of w,
induced by the adsorption to the resonator. The rela-
tionship between Aw with the deposited mass Am is
given by

 2mefr

Am = Aw =R Ao, (20)

Wn

where R = (—2megr/w,)~" is defined as the mass
responsivity. However, the measurement techniques are
rather challenging. For example, electrical measurement
is unsuitable for mass detections based on very high fre-
quency NRs because of the generated heat effect [24].
For optical detection, as device dimensions are scaled
far below the detection wavelength, diffraction effects
become pronounced and will limit the sensitivity of this
approach [25]. Moreover, in any actual implementation,
frequency stability of the measuring system as well as
various noise sources, including thermomechanical noise
generated by the internal loss mechanisms in the reso-
nator and Nyquist-Johnson noise from the readout cir-
cuitry [3,26] will also impose limits to the sensitivity of
measurement. Here, we can determine the frequency
shifts with high precision by the MW spectroscopy mea-
surement based on our coupled CPB-NR system.

3 Numerical results and discussion

In what follows, we choose the realistically reasonable
parameters to demonstrate the validity of mass sensing
based on the coupled CPB-NR system. Typical para-
meters of the CPB (charge qubit) are Ec/# = 40 GHz
and Ejo/h = 4 GHz such that Ec > Ej [27]. Experiments
by many researchers have demonstrated CPB eigenstates
with excited state lifetime of up to 2 us and coherence
times of a superpositions states as long as 0.5 us, i.e., T}
= 2us, and T, = 0.5 us [13,28,29]. NR with resonance
frequency w,, = 2 x 133 MHz, quality factor Q = 5000,
and effective mass meg = 73 fg has been used for zepto-
gram-scale mass sensing [5]. Besides, coupling constant
A between the CPB and NR can be chosen as 4 = 0.1w,,
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= 277 x 13.3 MHz [16]. We assume S = 1 um?, r = 10
um, and & = 200 uA[30], therefore, we can obtain u/i =
1oSE;o/ (8hr¢gy) ~ 30 GHzA™ and
2= 82T, = (u/h)ET, =3. The experiments of our
proposed mass sensing scheme should be done in situ
within a cryogenically cooled, ultrahigh vacuum appara-
tus with base pressure below 10'° Torr.

Firstly, we would show the principle of measuring the
resonance frequency of the NR in the coupled CPB-NR
system. Figure 2a illustrates the absorption of the signal
current as a function of the detuning 4; (4; = w; - w,).
The absorption (Im(y)) has been normalized with its
maximum when the control current is resonant with the
CPB qubit (A, = 0). Mollow triplet, commonly known in
atomic and some artificial two-level system [31,32],
appears in the middle part of Figure 2a. However, there
are also two sharp peaks located exactly at A; = t®,, in
the sidebands of the absorption spectrum, which corre-
sponds to the resonant absorption and amplification of
the vibrational mode of the NR. Our proposed mass
sensing scheme is just based on these new features in
the absorption spectrum. An intuitive physical picture
explaining these peaks can be given in the energy level
diagram shown in Figure 2b. The Hamiltonian of the
coupled system without the externally applied current
can be diagonalized [33,34] in the eigenbasis of
|4, NL) = | £), ® eFO/en)@’=a)|N), with the eigenener-
gies E, = +h/2w, + hw,(N - Ao), where the CPB qubit
states |+t), are eigenstates of o, with the excited state |+)
. = |e) and the ground state |-), = |g), the resonator
states |N.) are position-displaced Fock states. Transi-
tions between |-, N_) and |+, (N + 1),) represent signal
absorption centered at @, + w,, (the rightmost solid line
in Figure 2b). Besides, transitions between |+, N,) and
|-, (N + 1)) indicate probe amplification (the leftmost
solid line in Figure 2b) because of a three-photon pro-
cess, involving simultaneous absorption of two control
photons and emission of a photon at frequency o, - ®,,.
The middle dashed lines in Figure 2a corresponds to the
transition where the signal frequency is equal to the
control frequency. Therefore, Figure 2a provides a
method to measure the resonance frequency of the NR.
If we first tune the frequency of the control MW cur-
rent to be resonant with the CPB qubit (v, = w,) and
scan the signal frequency across the CPB qubit fre-
quency, then we can easily obtain the resonance fre-
quency of the NR from the signal absorption spectrum.

Next, we illustrate how to measure the mass of the
particles landing on the NR based on the above discus-
sions. Unlike traditional mass spectrometers, nanome-
chanical mass sensors do not require the potentially
destructive ionization of the test sample, are more sensi-
tive to large biomolecules, such as proteins and DNA,
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Figure 2 Scaled absorption spectrum of the signal current as a function of the detuning 4 and energy level diagram of the coupled
system. (a) Scaled absorption spectrum of the signal current as a function of the detuning A, without landing any masses on the NR. (b) The
energy level diagram of the CPB coupled to an NR. (c) Signal absorption spectrum as a function of A before (black solid line) and after (red
dashed line) a binding event of ~ 10 functionalized 1587 bp long dsDNA molecules. Frequency shift of 95 kHz can be well resolved in the
spectrum. Other parameters used are w,, = 835 MHz, 1, = 001, A. = 0, Q = 5000, T; = 0.25 us, T, = 0.05 us, and Q. = 3.
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and could eventually be incorporated on a chip [6].
Here, we use the functionalized 1587 bp long dsDNA
molecules with mass mpna = 1659 zg (1 zg = 102 2)
[35], and assume for simplicity that the mass adds uni-
formly to the mass of the overall NR and changes the
resonance frequency of the NR by an amount given by
Equation 19. Figure 2c demonstrates the signal absorp-
tion as a function of A; before and after a binding event
of ~ 10 functionalized 1587 bp DNA molecules in the
vicinity of the resonance frequency of the NR. We can
see clearly that there is a resonance frequency shift Aw
-95 kHz after the adsorption of the DNA molecules
because of the increased mass of the NR. According to
Equation 19, we can obtain the mass of the accreted
DNA molecule: Am = —*" Aw = 165902g, about the

mass of 10 functionalized 1587 bp long dsDNA mole-
cules. Therefore, such a coupled CPB-NR system can be

used to weigh the external accreted mass landing on the
NR by measuring the frequency shift in the signal
absorption spectrum when the control current is reso-
nant with the CPB qubit. Plot of frequency shifts versus
the number of DNA molecules landing on two different
masses of NRs. Other parameters used are w, = 835
MHz, Ay = 0.01, A, = 0, Q = 5000, T, = 0.25 us, T, =
0.05 ps, and Q. = 3. Mass responsivity R is an impor-
tant parameter to evaluate the performance of a resona-
tor for mass sensing. Figure 3 plots the frequency shifts
as a function of the number of DNA molecules landing
on the NR for two different kinds of NRs. One is w,,
27 x 133 MHz (meg = 73 fg), the other is w,, = 27 x
190 MHz (mg = 96 fg) [2,3]. The mass responsivities,
which can be obtained from the slope of the line, are,
respectively, |R| = 5.72Hz/zg and |R| ~ 6.21 Hz/zg.
Smaller mass of the nanoresonator enables higher mass
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responsivity. Here, we have assumed that the DNA
molecules land evenly on the NR and they remain on it.
In fact, the position on the surface of the resonator
where the binding takes place is one factor that strongly
affects the resonance frequency shift. The maximization
in mass responsivity is obtained if the landing takes
places at the position where the resonator’s vibrational
amplitude is maximum. For the doubly clamped NR
used in our model, maximum shift is achieved at the
center for the fundamental mode of vibration, while the
minimum shift exists at the clamping points. This statis-
tical distribution of frequency shifts has been investi-
gated by building the histogram of event probability
versus frequency shift for small ensembles of sequential
single molecule or single nanoparticle adsorption events
[6,7].

In order to demonstrate the novelty of our proposed
mass sensing scheme, we plot Figure 4 to illustrate how
the vibration mode of NR and the control current affect
the spectral features. Figure 4a shows the absorption
spectrum of the signal field through the CPB system
without the influence of the NR (coupling off) in the

absence of the control field (control off), which shows
the standard resonance absorption profile. However,
when the coupling turns on, the center of the curve
shifts from the resonance ws = wq a bit, as shown in
Figure 4b. This is because of the coupling 4, between
the CPB and the NR [16,36]. Figure 4c demonstrates the
absorption spectrum of the signal field when the control
field turns on in the absence of the NR (coupling off).
This is the commonly known Mollow triplet, which
appears in atomic and some artificial two-level system
[31,32]. None of the above situations can be used to
measure the resonance frequency of the NR. However,
when the coupled CPB-NR system is driven by a strong
control field and a weak signal field simultaneously, the
resonance frequency of the NR be measured from the
absorption spectrum of the signal field, as shown in Fig-
ure 4d. The spectral linewidth of the two sideband
peaks that corresponds to the resonance frequency of
the NR is much narrower than the peak in the center,
since the damping rate of the NR is much smaller than
the decay rate of the CPB qubit. Therefore, such a
coupled CPB-NR system is proposed here to measure
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Figure 4 Signal current absorption spectrum as a function of the detuning A considering the effects of NR and the control field.
Other parameters are A. = 0, Q = 5000, T = 0.25 us, T, = 0.05 us, and w, = 835 MHz.

the resonance frequency of the NR when the control
field is resonant with the CPB qubit (v, = w,). By mea-
suring the frequency shift of the NR before and after
the adsorption of particles landing on it, we can obtain
the accreted mass according to Equation 19.

4 Conclusion

To conclude, we have demonstrated that the coupled
NR-CPB system driven by two MW currents can be
employed as a mass sensor. In this coupled system, the
CPB serves as an auxiliary system to read out the reso-
nance frequency of the NR. Therefore, the accreted
mass landing on the NR can be weighed conveniently
by measuring the frequency shifts in the signal absorp-
tion spectrum. In addition, the use of on-chip capacitive
readout will prove especially advantageous for detection
in liquid environments of low or arbitrarily varying opti-
cal transparency, as well as for operation at cryogenic
temperatures, where maintenance of precise optical
component alignment becomes difficult.
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