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Abstract

We have studied the phase and structure evolution of the Ti33Cu67 amorphous alloy subjected to electrical pulses
of high current density. By varying the pulse parameters, different stages of crystallization could be observed in the
samples. Partial polymorphic nanocrystallization resulting in the formation of 5- to 8-nm crystallites of the TiCu2
intermetallic in the residual amorphous matrix occurred when the maximum current density reached 9.7·108 A m-2

and the pulse duration was 140 μs, though the calculated temperature increase due to Joule heating was not
enough to reach the crystallization temperature of the alloy. Samples subjected to higher current densities and
higher values of the evolved Joule heat per unit mass fully crystallized and contained the Ti2Cu3 and TiCu3 phases.
A common feature of the crystallized ribbons was their non-uniform microstructure with regions that experienced
local melting and rapid solidification.
PACS: 81; 81.05.Bx; 81.05.Kf.

Background
Metallic glasses are metastable materials, which crystallize
when heated up to temperatures exceeding their crystalli-
zation temperature Tc [1,2]. A metallic glass partially crys-
tallized in a controlled manner contains nanocrystals in an
amorphous matrix. The controlled crystallization of metal-
lic glasses is a promising technique of developing amor-
phous matrix composites with improved ductility
compared to monolithic metallic glasses [3,4]. However,
when metallic glass fully crystallizes transforming into a
mixture of intermetallics, which are very brittle, attractive
mechanical properties of metallic glass and its excellent
corrosion resistance are lost. The crystallization behavior
of metallic glasses strongly depends on the heating rate
and annealing time.
Rapid heating and short annealing durations (of the

order of several seconds) can be achieved using a dc elec-
trical current [5-7] or infrared flash annealing of metallic
glasses [8]. High heating rates and extremely fast anneal-
ing/crystallization are involved in the treatments by very
short electrical pulses (10-4 to 10-3 s) of high current den-
sity (107 to 109 A m-2) [9-12] and by lasers [13-15]. Rapid

heating allows the metallic glass to crystallize at higher
temperatures; certain crystallization stages can be
bypassed. In recent years, thanks to the development of
new laser experimental techniques, rapid heating of metal-
lic glass became a part of the processes of laser-assisted
amorphous coating deposition and additive manufacturing
[15]. Up to date, the crystallization under pulsed heating
has not been widely presented in the literature; however,
recent studies show that unusual phenomena can occur
when amorphous alloys are rapidly heated by a laser.
LaGrange et al. [13] have shown that the kinetics of crys-
tallization of amorphous films under extremely fast heat-
ing is very different from the kinetics observed under slow
heating with nucleation and growth rates in the former
case several orders of magnitude higher. In terms of
microstructure, observations of the distinct features -
spherulites in an amorphous matrix - locally forming
under pulsed laser heating of pre-deposited powder layers
are reported [15].
Electrical currents induce a variety of phenomena in

amorphous materials [16-18] depending on the application
mode. Due to Joule heating by the passing electrical cur-
rent, metallic glass loses its thermal stability and crystal-
lizes. As was suggested by Mizubayashi et al. [10],
electrical current can induce a resonant collective motion
of atoms, thereby enhancing atomic migration and
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facilitating crystallization at temperatures far below the
crystallization temperature of the alloy.
In this work, we focus on the phase and microstruc-

ture development in the Ti33Cu67 alloy ribbons
brought to successive stages of crystallization by high-
density electrical pulsing. We apply a pulsed electrical
current of high current density (of the order of 108 to
109 A m-2) to thin ribbons of the amorphous alloy
Ti33Cu67 and analyze the effects of the electrical cur-
rent parameters on the phase composition and micro-
structure of the crystallized alloy. The estimated
heating rates during the electrical pulses in this work
are of the order of 106 to 107 K s-1. So, electrical pul-
sing can create heating rates comparable to quenching
rates used during the preparation of amorphous alloys.
Electrical pulsing of high current densities and short
pulse durations creates conditions of rapid heating and
cooling. A sample experiencing high-density currents
can fracture, fully degrade, or explode. Using extremely
short pulses, certain crystallization stages can be
quenched in the samples and metastable products/
microstructures can be obtained. Hence, electrical pul-
sing makes it possible to study physical and chemical
phenomena under strongly non-equilibrium conditions
during heating and cooling. Even under high current
densities, it is still possible to keep the sample’s shape
inducing partial crystallization (nanocrystallization) of
the amorphous alloy.

Results and discussion
Crystallization of the Ti33Cu67 ribbons was triggered by
electrical pulses of different durations and maximum cur-
rent. The mode of current decay was exponential or lin-
ear. The characteristics of the current pulses are
presented in Table 1 along with the maximum current
densities (calculated using the maximum current during
the pulse). The Joule heat per unit mass evolved in the
sample during the electric pulse can be calculated
neglecting the resistivity changes. The sample mass can
be expressed as

M = d l s h,

where d is the density of the alloy; l is the length; s is
the width and h is the thickness of the ribbon.
The Joule heat evolved during the pulse can be

expressed as follows

Q = ∫ I2R dt.

The resistance of the ribbon piece can be estimated as

R = ρ l/sh,

where r is the resistivity of the amorphous material
measured to be 2.4 · 10-6 Ω m.
The Joule heat evolved in the sample per unit mass is

Q/M = ρ ∫ I2dt/s2h2d.

The samples N1 to N4 in Table 1 are placed in the
order of increasing the maximum current density and
the value of Joule heat per unit mass.
Ribbon N1 was thicker than the other samples and

was set to experience the lowest current density. After
the pulse, it retained its shape and did not show any
visible cracks or macrodefects. On the other hand, sam-
ples N2, N3, and N4 became very brittle after electrical
pulsing and contained a lot of cracks. The most severe
effect was observed in sample N4. When even higher
current densities were applied (not shown), the samples
exploded, did not keep their wholeness and transformed
into small pieces and powder particles.
XRD patterns of the crystallized ribbons are shown in

Figure 1 along with the pattern of the initial ribbon. The
as-quenched ribbon is amorphous as is confirmed by the
presence of a broad halo in the pattern. In the pattern
corresponding to sample N1, we observe a halo of
reduced intensity and a very broad reflection from a crys-
talline phase TiCu2, which indicates partial crystalliza-
tion. Based on the shape of the XRD profile, one can
anticipate the presence of very fine grains of the crystal-
line phase TiCu2 (Amm2; a = 4.36 Å, b = 7.98 Å, c = 4.48

Table 1 Thickness of the Ti33Cu67 ribbon samples, electrical pulsing parameters, calculated current density and Joule
heat evolved during the pulses

Sample Thickness of the
ribbon,
μm

Pulse
duration, μs

Maximum
current,

A

Maximum
current
densitya,
A · m-2

Q/m, J
kg-1

Possible processes in the sample caused by
Joule heating

N1 100 140 145 9.7 · 108 5.3 · 104 Heating up to approximately 480 K

N2 30 230 110 2.2 · 109 3.4 · 105 Heating up to the solidus temperature, partial
melting

N3 40 100 284 4.7 · 109 4.4 · 105 Heating up to the solidus temperature, partial
melting

N4 25 140 190 5.1 · 109 1.0 · 106 Heating up the liquidus temperature, complete
melting

aCalculated using the maximum current

Dudina et al. Nanoscale Research Letters 2011, 6:512
http://www.nanoscalereslett.com/content/6/1/512

Page 2 of 8



Å). Figure 2a shows an HRTEM image of the crystallized
alloy that has experienced partial polymorphic crystalliza-
tion and shows a two-phase structure with crystalline
particles of 5 to 8 nm distributed in the residual amor-
phous matrix. A selected area diffraction pattern is
shown in Figure 2b. A larger area of the crystallized sam-
ple is shown in a dark-field image (Figure 2c). Similar
microstructures can be obtained directly during casting
of alloys of certain compositions [3] or can be produced
through precisely controlled heating of initially amor-
phous alloys in in situ experiments using synchrotron
radiation to detect the early formation of nanocrystals in
an amorphous matrix [4].
The calculated Joule heat for ribbon N1 was enough

only to increase the temperature of the material by 180
K from room temperature assuming the heat capacity of
the Ti33Cu67 alloy C = 0.5·103 J kg-1 K-1. According to
Buschow [19] and Zaprianova et al. [20], the crystalliza-
tion temperature of the Ti33Cu67 alloy is 700 K, which
implies that during pulsing the crystallization tempera-
ture was not reached. Hence, non-thermal effects play
an essential role in the crystallization processes. The
crystallization of the alloy was induced by the electrical
current, which is in agreement with observations of
other authors [11,12]. Thus, Mizabayashi et al. [12]
applied electrical pulses with a current density ranging
between 1.7 · 109 and 2.7 · 109 A m-2 to Zr50Cu50 amor-
phous ribbons triggering nanocrystallization in the sam-
ple that was not heated up to its crystallization
temperature measured in the absence of current. In that
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Figure 1 XRD patterns of the initial Ti33Cu67 ribbon and
ribbons crystallized under different electrical pulse conditions.
(see Table 1).

a 
 

 
b 

 

c 
Figure 2 TEM characterization of the Ti33Cu67 ribbon
crystallized under a pulse of electrical current, sample N1. (a)
HRTEM micrograph; (b) selected area diffraction pattern; (c) dark-
field electron image showing a larger area of the sample.
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case, plates of high thermal conductivity were put in
contact with the ribbons during the experiment, based
on which the authors considered the crystallization to
be athermal and caused by electrical field only. In the
present study, no special precautions were taken to dis-
sipate heat from the sample while the current densities
were of the order of 109 A m-2. However, it was possible
to induce moderate heating and achieve partial crystalli-
zation due to the use of extremely short pulses. Also, as
it will be seen below, there were a few areas in the sam-
ple, in which the temperature rose much higher than
the calculated average value.
When higher current densities are applied to the sam-

ples, further crystallization stages are detected, as is seen
from the XRD patterns of samples N2 to N4 (Figure 1).
The calculated values of Joule heat are also higher com-
pared to that of sample N1. The amorphous halo is no
longer detectable in the patterns of N3, while the TiCu2
intermetallic phase decomposes to form intermetallic
compounds indexed as Ti2Cu3 (P4/nmm; a = 3.13 Å, c
= 13.95 Å) and TiCu3 (Pmnm; a = 5.45 Å, b = 4.42 Å, c
= 4.30 Å). A small amount of the amorphous phase may
still be present in N2 and N4. The Joule heat evolved in
ribbon N2 was enough to heat the alloy up to its solidus
temperature, which is 1,123 K according to [21], and
partially melt it; similar processes could be expected for
ribbon N3. The calculations for ribbon N4 lead to a
conclusion that the sample could fully melt and then re-
crystallize. Indeed, N4 was very brittle and did not
retain its shape after electrical pulsing. The crystal struc-
ture of the ribbons crystallized under electrical pulses
differs from that of the ribbons crystallized by conven-
tional annealing. Figure 3 shows an XRD pattern of the
ribbon annealed in vacuum at 773 K for 15 min. The
ribbon is fully crystallized and contains Ti2Cu3 (P4/

nmm; a = 3.13 Å, c = 13.95 Å) and TiCu3 (Pmmn; a =
5.16 Å, b = 4.35 Å, c = 4.53 Å) phases showing narrow
reflections in the XRD pattern; the ratios of the XRD
line intensities of the phases do not correspond to those
of the ribbons crystallized by electrical pulsing. This
leads to a conclusion that the crystal structure of the
phases in the ribbons crystallized by pulsing is still
metastable. Worth noting is the fact that the TiCu3
phase formed during conventional annealing has lattice
parameters different from those of the TiCu3 phase
formed during electrical pulsing (the phases were
described using different JCPDS cards).
In order to reveal the microstructural features, the rib-

bons were electrochemically etched in a HNO3-CH3OH
solution. Figure 4 shows a SEM image of the surface of
the initial ribbon to be used as a reference when analyz-
ing the structure of the crystallized ribbons shown in
Figure 5 (two different magnifications in Figure 5 are
shown for each sample in order to demonstrate unusual
microstructural features and non-uniformity at different
scales). A common feature of the crystallized ribbons was
their non-uniform microstructure with regions that
experienced local melting and rapid solidification. In N1,
droplet-like featureless areas clearly indicate that melting
and rapid solidification took place locally (Figure 5a,b).
The surface of samples N2 (Figure 5c,d) and N3 (Figure
5e,f) subjected to electrical current is covered by a net-
work of cracks. These features are more intense from
sample N2 to N3 following the severity of electrical cur-
rent conditions applied. In addition, droplet-like islands
in N2 show that melting occurred in certain areas, mani-
festing thus a local temperature increase during the treat-
ment of the samples by electrical pulsing. For
comparison, the samples conventionally annealed and
etched under the same conditions are shown in Figure
5g,h. They possess a perfectly uniform microstructure
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Figure 3 XRD pattern of the Ti33Cu67 ribbon annealed at 773 K
for 15 min.

Figure 4 SEM micrograph of the initial amorphous alloy ribbon
Ti33Cu67 electrochemically etched in HNO3-CH3OH.
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revealing micron and submicron grains of the crystalliza-
tion products.
An explanation can be suggested in order to rationalize

the observed microstructures of the ribbons crystallized

under electrical current. Crystallization in amorphous
ribbons starts in certain zones (first crystallized zones),
which further determine the crystallization process and
evolution of the microstructure [22]. Generally, these
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Figure 5 SEM micrograph of the Ti33Cu67 ribbons electrochemically etched in HNO3-CH3OH. (a, b) N1; (c, d) N2; (e, f) N3; (g, h)
conventionally annealed at 773 K.
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zones could be associated either with local compositional
deviations increasing the likelihood of crystallization or
with thickness variations and/or surface defects of the
ribbons practically unavoidable during melt-spinning. In
multicomponents metallic glasses, nanoscale composi-
tional heterogeneities were predicted by Fujita et al. [23]
using molecular dynamics simulation while mesoscale
(submicron) heterogeneities were experimentally
observed by Caron et al. [24]. In the present work, a bin-
ary metallic glass crystallizes and shows non-uniformities
in the microstructure, whose scale is tens of microns.
The surface of the initial amorphous ribbon etched
under the same conditions as the crystallized ribbons
reveals certain features that could appear as a result of
the initial surface roughness of the as-spun ribbons. The
scale of these features and their random distribution
coincides with the scale and distribution of non-unifor-
mities observed in the crystallized ribbons as droplet-like
featureless areas. This allows us to draw a conclusion
that the thickness variations and surface defects play a
significant role in determining the behavior of the rib-
bons during crystallization under electrical current. The
fact that the same ribbons when heated conventionally
show a uniform microstructure clearly indicates that the
observed non-uniformities formed as a response of the
alloy ribbons to the passing electrical current. The as-
spun ribbons are not ideally flat and the thinner areas of
the ribbons are heated up to higher temperatures relative
to the average temperature of the sample such that the
alloy locally melts in the corresponding regions. The
areas that crystallized first reduce their resistivity and at
later stages evolve lower Joule heat compared to the
regions that are still amorphous. This forms a non-uni-
form temperature field in the sample, which also rapidly
changes in time as the parameters of the electrical cur-
rent change during the pulse. The non-uniform tempera-
ture field in the samples creates mechanical stresses
further contributing to the microstructural development
in the crystallized sample. Since the pulses used in this
work are very short, the non-uniform microstructures
formed in the crystallized samples and metastable phase
compositions are quenched and can be later observed at
room temperature.
In a practical aspect, a promising application of amor-

phous Ti-Cu-based alloys is brazing filler materials
[25-27]. Owing to their flexibility and ductility, thin
amorphous ribbons offer a convenient way of placing an
alloy of a certain composition between the parts to be
joined. Ti-Cu-based amorphous alloys are attractive
brazing fillers with titanium playing the role of an active
component capable of chemically reacting with the
material of the brazed parts. When resistance brazing is
conducted, the heat can be delivered locally to a well-
defined region using electrical pulses. The crystallization

behavior of the Ti-Cu alloys under electrical pulsing
should be taken into account during selection of the
brazing parameters. Joule heating of metallic glasses can
be used for connecting and shaping purposes at tem-
peratures within the supercooled liquid region of the
glass [28]. If pulsed current is applied in such processes,
a possibility of crystallization occurring locally needs to
be considered as the presence of crystallization products
can deteriorate the quality of the joint and its mechani-
cal strength.

Conclusions
We have studied the crystallization of Ti33Cu67 amor-
phous ribbons under electrical pulses of high current
density. By varying the pulse parameters, different stages
of crystallization were reached and quenched in the sam-
ples. Partial polymorphic crystallization resulting in the
formation of 5- to 8-nm crystallites of the TiCu2 interme-
tallic in the residual amorphous matrix occurred when
the current density reached 9.7 · 108 A m-2 and the pulse
duration was 140 μs. Samples that experienced higher
current densities contained the Ti2Cu3 and TiCu3. The
microstructures of ribbons crystallized by electrical pul-
sing showed evidence of local melting and solidification,
and differed dramatically from those of the ribbons crys-
tallized by conventional heating. The complete crystalli-
zation of the ribbons was accompanied by the formation
of cracks due to extremely brittle behavior of the mixture
of intermetallic phases while the nanocrystallized samples
well retained their shape and wholeness.

Methods
Titanium and copper (99.99%) were arc-melted in an
argon atmosphere to prepare the master alloy. Ti33Cu67
ribbons were produced from the master ingots by rapid
quenching of the liquid using the single roller melt-spin-
ning technique. The thickness of the ribbons in the as-
quenched sample varied from 25 to 100 μm, the width
of the ribbons was 1.5 mm.
The scheme of the experimental set-up for applying

electrical pulses to thin ribbons is shown in Figure 6.
No special configuration was used to provide heat sink
from the ribbon pieces subjected to electrical current.
The length of the ribbon samples was 20 mm.
The XRD phase analysis of the initial and crystallized

ribbons was performed using a D8 ADVANCE diffract-
ometer (Bruker) using Cu Ka radiation.
In order to prepare samples for scanning electron

microscopy (SEM) observations, the initial amorphous
ribbon and the crystallized samples were electrochemi-
cally etched in a HNO3-CH3OH solution containing 33
vol.% of HNO3 under an applied voltage of 5 V for 30 s.
The SEM was performed using a Hitachi-Tabletop TM-
1000 microscope (Japan).
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High-resolution transmission electron microscopy
(HRTEM) was performed using a JEOL-4000EX micro-
scope operated at 400 keV. This microscope is equipped
with an improved objective lens pole piece UHP-40H with
Cs = 0.85 mm and characterized by ‘point-to-point’ reso-
lution of 0.16 nm. Thin foils for HRTEM investigations
were prepared by routine techniques including grinding
and ion milling. The pieces of ribbons were cut and fixed
on a standard copper holder with a slot by means of glue.
Ion milling was performed using a Gatan Precision Ion
Polishing System Mode 691. The total ion milling time
required for the preparation of thin areas in the samples
was about 2 to 2.5 h. The milling angle and the milling
energy were approximately 5° and 5 keV at the first stage
and 1° and 1 keV at the last stage of the ion milling
process.
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