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Optical integration is essential for practical application, but it remains unexplored for nanoscale devices. A newly
designed nanocomposite based on ZnO semiconductor nanowires and Th(OH)s/SiO, core/shell nanospheres has
been synthesized and studied. The unique sea urchin-type morphology, bright and sharply visible emission bands
of lanthanide, and large aspect ratio of ZnO crystalline nanotips make this novel composite an excellent signal
receiver, waveguide, and emitter. The multifunctional composite of ZnO nanotips and Tb(OH)s/SiO, nanoparticles
therefore can serve as an integrated nanophotonics hub. Moreover, the composite of ZnO nanotips deposited on a
Tb(OH)3/SiO, photonic crystal can act as a directional light fountain, in which the confined radiation from Tb ions
inside the photonic crystal can be well guided and escape through the ZnO nanotips. Therefore, the output
emission arising from Tb ions is truly directional, and its intensity can be greatly enhanced. With highly enhanced
lasing emissions in ZnO-Tb(OH)s/SiO, as well as SnO,-Tb(OH)s/SiO, nanocomposites, we demonstrate that our
approach is extremely beneficial for the creation of low threshold and high-power nanolaser.

Background

Semiconductive photonic nanostructures have attracted
increasing attention for its many possible applications,
such as laser, solar cell, biosensor, and photoelectric
conversion [1-4]. Among all the semiconductor materi-
als, zinc oxide is of great interest for photonic applica-
tions due to its wide bandgap (3.37 eV) and efficient
emission [5]. The optoelectronic properties of zinc oxide
depend critically on its defect structure and rich
morphologies. ZnO nanostructures have been made into
diverse morphologies, such as nanoparticles, nanorods,
nanowires, nanobelts, and nanotubes [6-9]. Of these,
ZnO nanorods have received the greatest attention and
have shown to be a good laser emitter, an electron emit-
ter, and a photoelectric converter. Their excellent opti-
cal behaviors are due to the fact that ZnO cannot only
be a good gain medium but also can present good con-
finements for both photons and electrons. Numerical
calculations have concluded that ZnO nanorods provide
high lateral photonic confinement and are excellent
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waveguides [10]. Light intensity losses occur only at the
end faces, and this makes longer nanorods higher Q
resonators. In addition, nanostructures like ZnO nanor-
ods coupled with photonic nanomaterials can lead to
newer applications.

When another optical nanostructure is coupled with
ZnQO, the integrated optical phenomenon can be demon-
strated. We would like to study the coupling of ZnO
and the strong luminescent nanomaterials of lanthanide
hydroxide. Due to the unique electronic, optical, and
magnetic properties arising from the 4f electrons,
lanthanide hydroxides are very attractive in various
applications, including catalysts, laser materials, biola-
bels, and magnetic resonance imaging [11]. Previously,
lanthanide-doped nanoparticles have been fabricated
mainly by ion implantation [12], sol-gel method [13],
and sonochemical synthesis [14]. Unfortunately, the
obtained size is often not uniform. Recently, we reported
a one-pot synthesis of monodispersed core/shell Th(OH)
3/SiO, colloids [15]. The Tb(OH)3/SiO, colloidal parti-
cles self-assembled into a 3-D photonic crystals (PCs),
giving a pronounced optical gap depending on the parti-
cle size. Many efforts have been made on applications of
PCs, such as the resonators, sensors, and reflectors
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[16-18]. To expand more applications of Th(OH)3/SiO,
with other materials and nanostructures, semiconductor
nanowires were chosen because they can be used as
waveguides when attached to other luminescent materi-
als [19]. Based on the monodispersed Th(OH)3/SiO,
core/shell nanoparticles, we report a novel composite
with ZnO nanotip on Tb(OH)3/SiO, core/shell nanopar-
ticle (ZnO-Tb(OH)3/SiO,), which can be used to manip-
ulate the emissions from inside the PCs. Due to the
confinement effect of PC, emissions can escape only
from the nanotips of ZnO. We found that the light out-
put can be greatly enhanced by two orders of magni-
tude. To optimize this effect, SnO, nanowires were
selected to show the enhanced lasing emission of Tb
(OH)3/SiO, PCs by growing them on Tb(OH)3/SiO,
PCs of 130 nm which can perform better lasing action
at 380 nm. Therefore, these novel composites act like
directional light fountains, i.e., the light confined under-
neath the surface of the photonic crystal can be
extracted only through the specially designed semicon-
ductor nanotips. We show that this unique property is
very useful to create low threshold and high-power
nanolasers.

Methods

Nanoparticles of Th(OH)3; were encapsulated inside
silica as core/shell structures with an outer diameter of
250 nm by a one-pot synthesis method reported in our
previous paper [15]. The monodispersed nanoparticles
were self-assembled on glass or Si (100) substrate by a
slow evaporation method, resulting in self-organized
packing as photonic crystals. After coating with gold
nanoparticles (20 mA, 20 s), Tb(OH)3/SiO, nanoparti-
cles were used as templates in a vapor-liquid-solid pro-
cess to grow ZnO nanowires on the nanospheres. The
mixed C/Zn powders were placed in an alumina boat,
which was loaded in the center of a tube furnace. The
gold-coated lanthanide nanosphere substrate was placed
in the same boat but apart from the mixed powders for
about 3 cm. Argon was then introduced into the system
with a flow rate of 200 sccm as the carrier gas. After-
wards, the tube was heated to 980°C at a rate of 40°C/
min. The reaction lasted about 60 min. After the fur-
nace cooled down, white color products formed on the
surface of the lanthanide nanosphere substrate. For
SnO, nanowire growth, the C/Zn powders were
replaced with C/Sn powders then follow the above
steps. Cathodoluminescence (CL) experiments were per-
formed at room temperature with a scanning electron
microscopy (JSM 6500, JEOL Ltd., Tokyo, Japan). Exci-
tation spectra were gathered by a PMT detector with a
CL system (Gatan instrument, MonoCL3, Gatan, Inc.,
Pleasanton, CA, USA).
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Results and discussion
Fabrication of ZnO-Tb(OH)5/SiO, composites
When the ZnO nanotips are grown on Th(OH)3/SiO,
nanospheres, they possess a wurtzite structure with a
longer length of 15 um (Figure 1a). In contrast, ZnO
rods grown on sapphire under the same growth condi-
tions are generally less than 5 pm long [20,21]. As ZnO
nanotips were grown on Tb(OH)3/SiO, nanospheres, it
gradually transforms from a hexagonal to a conical
shape (Figure 1b). The conical tip shape and the high
aspect ratio (approximately 150) of nanotips are espe-
cially beneficial for field emission application. Generally,
more than one ZnO nanotip can be grown on each
nanosphere. For the aggregation of Tb(OH)3/SiO, nano-
spheres, the composite of the ZnO nanotips and nano-
spheres appears like a sea urchin as shown in Figure 1c.
When a ZnO nanotip adheres to a Tbh(OH)3/SiO,
nanosphere (Figure 2a), one can collect the emission of
excited Th(OH)3/SiO, nanoparticles at the end of ZnO
and vice versa. Due to the multiple transition bands of
Tb3" (°D3-"Fs, 381 nm; °Ds3-"Fs, 416 nm; °Ds-"F,, 439
nm; °Ds-"Fs, 460 nm; °D,-"Fg, 491 nm; and °Dy4-"Fs, 546
nm; °Dy-"Fy, 591 nm) [22] and band edge (380 nm) and
defect emissions (500 nm) of ZnO, the complex emis-
sions of ZnO-Tb(OH)3/SiO, are illustrated with single
ZnO nanotip-Tb(OH)3/SiO, and urchin-like composites.
As shown in Figure 2a, when a ZnO nanotip was excited
by an electron beam at 2.3 um apart from the center of
Tb ion, the emissions of ZnO at 380 and 500 nm were
propagated through the rod and then excited Tb giving
rise to the CL spectrum emissions at 414, 438, 460, and
546 nm (Figure 2b). During the secondary excitation
process, the Tb ion acts as a signal receiver and an

emitter. Furthermore, as a result of the resonance
(nAD = N) between the propagating emission of ZnO
at 380 nm (1) and the SiO, cavity (n = 1.5) with a dia-
meter of 250 nm (D), the emission wavelength of ZnO
at 380 nm in Tb(OH)3/SiO, nanoparticles become 253
nm, which coincides with the cavity length. Thus, light
can resonate inside the nanoparticles, and the detected
emission with a wavelength of 380 nm outside the nano-
particle is highly enhanced.

For an urchin-like ZnO-Tb(OH)3/SiO, composite, sev-
eral ZnO nanotips diverge from the center as shown in
the inset of Figure 3. Because several emissions of Tb
overlap with the luminescence of ZnO nanotips, the
defect emission at 300 nm which originated only from
the defect state of silica was chosen to present the opti-
cal propagation properties. The lifetime of SiO, can be
extended to several seconds, depending on the calcina-
tion process, thus the emission of SiO, can be detected
by CL mapping [22]. For stand-alone ZnO nanowire,
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Figure 1 Fabrication of ZnO-Tb(OH)3/SiO, composites. (a) XRD pattern and (b) SEM image of an initially grown ZnO nanotip on a Tb(OH)s/
SiO, nanosphere. Inset is the TEM image of a single Tb(OH)s/SiO, nanoparticle of 250 nm with the scale bar of 50 nm. (c) SEM image of ZnO

nanotip composites, sea urchin-type.

there is no emission at 300 nm, thus the detected emis-
sion at 300 nm is certainly propagated from Tb(OH)3/
SiO,. As the Tb(OH)3/SiO, sphere was excited, the
emission can be propagated and detected along ZnO
nanotips as shown in a monochromatic CL image taken
at 300 nm (Figure 3). When excited, the emissions of
Tb ion also can be dispatched from the pivot to the tips
of ZnO. This behavior therefore proved that ZnO-Tb

(OH)3/SiO; can act as a light distributor/emitter, which
enables the signal coming from the center to be distrib-
uted into the surrounding ZnO tips. In addition, it acts
as an optical receiver, which is able to collect the light
injected at the end of ZnO nanotips. As demonstrated
above, these ZnO-Tb(OH)3/SiO, nanocomposites can
function as a waveguide, a receiver, an emitter, as well
as a distributor. Therefore, the nanocomposite can serve
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Figure 2 ZnO nanotip adhering to a Tb(OH)3/SiO,. (a) An
electron beam was focused at a point (white dot) on the ZnO
nanowire, which was grown on a Tb(OH)3/SiO, nanosphere with an
acceleration voltage of 10 keV. (b) Collected CL spectrum of (a). The
inset is the CL spectrum of pure ZnO nanowires.

Figure 3 Demonstration of the waveguide behavior of ZnO
nanowires. CL image of sea urchin-like ZnO-Tb(OH)s/SiO,
nanocomposites taken at 300 nm with an electron acceleration
voltage of 15 keV. The inset is the corresponding SEM image.

Page 4 of 7

as a multifunctional integrated nanophotonic hub, which
serves as an efficient control for injected light.

Photonic bandgap and CL spectra of Tb(OH);/SiO, PCs
The top and lateral SEM images show assembled Tb
(OH)3/SiO, PCs (250 nm diameter) of about 20 to 25
layers (as shown in Figure 4a, b). As the nanospheres
self-assembled into a face-centered cubic structure, it
formed a stop band along the I' to L direction which
gives a sharp drop in the transmittance spectrum at
around 550 nm (Figure 4c). For a single Tb(OH)3/SiO,
nanoparticle, the CL spectrum exhibits several bright
emission bands of transitions from D levels to F levels
at room temperature, ranging from 350 to 650 nm (Fig-
ure 4d, dotted) [15]. The defect emission of silica at 300
nm was extremely weak in comparison to the lumines-
cence of Tb ion. As the nanoparticles self-assembled,
the stop band effect led to the modification of the emis-
sions for the Tb ion embedded in the PCs so that most
emission bands were quenched as shown by the solid
curve in Figure 4d. Note that the solid curve has been
enlarged by 25 times compared with that of the dotted
line. As the luminescence of the Tb ions was sup-
pressed, the defect emission of silica at 300 nm became
more pronounced. For Tb(OH)3/SiO, PCs, little emis-
sion could be detected in the well-packed region due to
the optical trap of the stop band. However, a CL image
shows that the confined emissions of the Tb ions can
escape from the crack region and be detected along the
crack defects (inset of Figure 5b).

As the electron beam with a spot size of 1 pum to
approximately 2 pm in diameter was focused on the Tb
(OH)3/SiO, PCs surface, CL spectra showed broadened
bands of intra-4f transitions under a small excitation
current. As the current reached 5 x 10°® A, two sharp
peaks of the CL spectrum appeared at 543 and 551 nm
(Figure 5a), possibly due to the Stark effect of stimulated
emission [23]. With increasing current, the two peaks
are more resolved, and the corresponding intensity
increases nonlinearly as shown in Figure 5b. The non-
linear relationship between CL intensity and excitation
current revealed a threshold current of 5 x 10 A, indi-
cating a stimulated emission behavior. PCs have been
used as a lasing cavity to stimulate the confined emis-
sion inside [18]. The low threshold may arise from the
release of optical resonance between emissions near the
stop band and the cavity of PCs.

Lasing action of rice paddy-like ZnO-Tb(OH)3/SiO, PCs
nanocomposites

After ZnO nanotips were grown on patterned Th(OH);/
Si0, PCs, they formed as rice paddy-like ZnO-Tb(OH)
3/SiO, PCs nanocomposites (inset of Figure 6). At least
40 times CL intensity was obtained in comparison to
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Figure 4 Optical response of the assembled Th(OH);/SiO, nanospheres and the resulting luminescence change. (a) Top view and (b)
lateral SEM images of assembled Tb(OH)s/SiO, nanospheres. (c) Transmittance spectrum of (a). (d) CL spectrum of randomly dispersed Th(OH)s/
SiO, (dotted line) and CL spectrum of assembled Th(OH)s/SiO, PCs (solid line), both were taken at an electron acceleration voltage of 15 kV.
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Figure 5 CL properties showing the emissions of Th(OH);/SiO,
PCs under different excitation currents. (a) Stimulated CL
emission spectra of Tb(OH)s/SiO, PCs with a diameter of 250 nm
taken at an electron acceleration voltage of 15 kV. (b) Emission
intensity at 543 and 551 nm vs the excitation current. The inset is
the CL image taken at full wavelength with an acceleration voltage
of 5 kV.

that of Tb(OH)3/SiO, PCs (Figure 6a). Giant optical
enhancement was found in ZnO-Tb(OH)3/SiO, PCs
that the previously diminished emission of PCs was
enhanced through the ZnO nanotips. This enhancement
demonstrated that in addition to defects, the confined
emission of Tb ions can be released by propagating
along ZnO nanotips. Under the circumstances, the ZnO
nanotips act like a directional light fountain, in which
the confined radiation inside PCs can escape from ZnO
nanotips. In retrospection of the development of lasing
mode or optical resonance, attention has been mostly
focused on materials or structures. However, the pur-
pose of the waveguide adapted lasing cavity is to reduce
the loss of propagated emission in omnidirection and
collimate light in a specific direction. As a result, the
output emission intensity can be greatly enhanced. Simi-
larly, once the lasing mode of the PCs is excited, the
emission can be efficiently guided. To explore this intri-
guing possibility, Tb(OH)3/SiO, PCs with a diameter of
130 nm were used to demonstrate the amplified laser
action. Figure 6b shows emission spectra of Tb(OH)3/
SiO, PCs with and without SnO, nanowires under the
same excitation current of 8 x 10 A. After the SnO,



Lin et al. Nanoscale Research Letters 2011, 6:503
http://www.nanoscalereslett.com/content/6/1/503

5x10°
(a)
. 4x10°1
[72)
Q - PCs+ZnO
= 3x10°{ ——PCs !
:.z.‘ :
@ A :
g 2x10°; :\‘. . i !\
- - an ¥ .
c . 5
i A \/
O 1x10°
x20
04
T v T T T T T T
300 400 500 600 700
Wavelength (nm)
(b)
— 1 TbPCs :
@ 1—TbPCs+snO, 2
o £
> | 3
=
7]
c
[}
-
£
-
O
] ) L] L)
360 380 400 420
Wavelength (nm)
Figure 6 Enhancement on the stimulated emission of Tb(OH)s/
SiO, PCs by using ZnO nanowires. CL spectra of only Tb(OH)s/
SiO, PCs (solid line) and ZnO nanotips-Th(OH)s/SiO, PCs (dotted
line) taken at an electron acceleration voltage of 20 keV. Inset is the
optical image of rice paddy-like ZnO-Tb(OH)5/SiO, PCs
nanocomposites. White regions denote the Tb(OH)s/SiO, PCs with
Zn0O nanowires. (b) Emission spectra of Tb(OH)s/SiO, PCs with and
without SnO, nanowires under the excitation current of 8 x 10 A.
Inset is the emission intensity of Tb(OH)s/SiO, with SnO, nanowires
Vs excitation current.

nanowires were grown on Tb(OH)3/SiO, PCs, the peak
intensity near 380 nm has risen up to 20 times, and the
full width at half maximum (FWHM) is about 2 nm.
The lasing peak at 380 nm away from the stop band at
330 nm is attributed to the band edge lasing operation
[24]. The inset of Figure 6b shows the dependence of
emission intensity on exciting energy for the Th(OH)3/
SiO, PCs with SnO, nanowires. Without the aid of
SnO, nanowires, the threshold for laser emission of Tb
(OH)5/SiO, PCs is evaluated at 4 x 10°® A based on the
result shown in Figure 5b. However, after SnO, nano-
wires were grown on Tb(OH)3/SiO, PCs, the threshold
is reduced to 5 x 10° A.
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Conclusions

With the designed ZnO-Tb(OH)3/SiO, nanocomposite,
a multifunctional integrated nanophotonic hub has been
created. We have shown that growing ultra tapered
ZnO nanotips on Tb(OH)3/SiO, PCs can yield good
control of emission out of PCs, in which the radiation
confined underneath the PC surface can be well guided
by the attached ZnO nanotips and escape from a
designed direction. Similarly, SnO, nanowires act as a
directional light fountain, which may be very useful for
the creation of ultra low threshold and high-power
nanolaser. In view of the novel properties discovered
here, the semiconductor Th(OH)3/SiO, composites pave
a new way for the realization of applications of
nanophotonics.

Abbreviations
CL: cathodoluminescence; PCs: photonic crystals; SEM: scanning electron
microscopy; VLS: vapor-liquid-solid.
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