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Abstract

PACS: 78.55.Cr, 77.22.Fj, 81.07.Gf.

We investigated the polarization dependence of the near-band-edge photoluminescence in ZnO strain-free
nanowires grown by vapor phase technique. The emission is polarized perpendicular to the nanowire axis with a
large polarization ratio (as high as 0.84 at 4.2 K and 0.63 at 300 K). The observed polarization ratio is explained in
terms of selection rules for excitonic transitions derived from the kp theory for ZnO. The temperature dependence
of the polarization ratio evidences a gradual activation of the X excitonic transition.
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Introduction

One-dimensional nanoscale semiconductors have
recently attracted considerable attention as promising
candidates for innovative device applications. Their high
surface to volume ratio can be exploited for the devel-
opment of a new generation of chemical and biological
sensors [1-3]. The wide bandgap (3.37 eV) of ZnO asso-
ciated with its large exciton binding energy (60 meV)
also makes it one of the most promising materials for
photonic devices, such as light-emitting diodes [4] and
lasers [5]. Thanks to the spatial separation of photogen-
erated carriers, UV photodetectors with a very high
photoconductive gain based on ZnO nanowires (NWs)
have been demonstrated [6]. It has been shown that the
photodetection properties of ZnO NWs depend on the
light polarization [7].

The photoluminescence of ZnO is typically composed
of a near-band-edge (NBE) peak due to excitonic recom-
bination and of a broad emission band in the visible
range related to deep defect states [8-10]. The polariza-
tion properties of the luminescence of ZnO have been
studied in bulk crystals [11-15]. However, these studies
provided no theoretical explanation of the polarization
behavior, especially of its temperature dependence. In
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the specific case of NWs, several studies have been car-
ried out, but they were focused on the interpretation of
the different behavior of defect and NBE luminescence
[16,17]. As shown in other semiconductor NW systems
[18], the polarization dependence in NWs results from
two competitive phenomena: bulk crystal symmetry
(imposing polarization perpendicular to c-axis) [19] and
dielectric contrast in thin NWs (privileging polarization
parallel to the NW axis) [7,20-23].

In this work, we have studied the polarization-resolved
microphotoluminescence (p-PL) of ZnO nanowires. We
measured the polarization dependence of the NBE lumi-
nescence for temperature from 4.2 to 300 K. The
experimental results are interpreted in the framework of
the k-p model, allowing for the evaluation of the polari-
zation ratio for each exciton type in bulk ZnO. The
temperature dependence of the polarization ratio evi-
dences a gradual activation of the Xc excitonic
transition.

Experimental details

ZnO NWs are prepared by means of vapor transport
process, in which the source material is vaporized and
transported by a gas carrier towards the substrates
where it condenses [24]. The experimental setup con-
sists of a furnace capable to reach temperatures needed
for oxide evaporation, a vacuum-sealed alumina tube
connected to a vacuum pump, an automated valve, and
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a mass flow meter to control pressure and carrier flux.
Adjusting the deposition conditions such as temperature
of evaporation and carrier gas composition and flux,
one-dimensional nanostructures can be obtained.

Platinum catalyst particles are firstly dispersed onto
silicon substrates by DC magnetron sputtering at a
working pressure of 5 x 10> mbar and 50 W applied
power. The source material is positioned at the middle
of the alumina tube and evaporated at a temperature of
1,370°C at a pressure of 100 mbar. The platinum cata-
lyzed substrates are placed onto an alumina holder and
positioned inside the tube in an area corresponding to a
temperature T = 660°C. Furnace heating from room
temperature to 1,370°C lasts 1.5 h. During furnace heat-
ing and cooling, a reverse Ar gas flow (from the sub-
strates to the powder) is applied to avoid uncontrolled
mass deposition under transient conditions. Once the
desired temperature is reached, the deposition condi-
tions are kept for 15 min, and afterwards, the furnace is
cooled down to room temperature.

As seen in Figure la, transmission electron micro-
scopy (TEM) analysis shows that the NWs are single

Figure 1 Bright-field HRTEM and SEM images. (a) Bright-field
HRTEM image along the <11-20 > viewing direction of a ZnO
nanowire. (b) SEM image of ensemble of ZnO nanowires.
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crystalline ZnO with a wurtzite structure. The NW axis
is oriented along the [0001] direction, and the structure
is free from extended defects. The high-resolution TEM
images evidence well-defined lateral sidewalls, parallel to
the wire growth direction. No impurities or precipitates
have been detected within the accuracy of the energy
dispersive X-ray spectroscopy performed in the TEM.
The N'W morphology was observed by scanning elec-
tron microscopy (SEM). A typical top-view SEM image
of the as-grown NW ensemble is shown in Figure 1b.
The SEM analyses show that the NWs do not have a
specific direction with respect to the substrate. The dia-
meter is dispersed in the range of 20 to 100 nm and the
length is in the range of 500 nm to 5 um.

Results and discussions
For p-PL studies, single NWs were detached by ultra-
sound bath from their substrates and dispersed in etha-
nol on Si substrates patterned with alignment marks.
The surface density of NWs is controlled by dispersion
in the range of 1 to 5 x 10° NWs/cm?, which is low
enough to avoid simultaneous optical excitation of sev-
eral wires with different orientations. The dispersed
NWs do not show any bending and are free of strain.
Polarization-resolved u-PL experiments have been per-
formed in the temperature interval of 4.2 to 300 K. The
samples were cooled down in a continuous-flow liquid
He cryostat and excited by means of a frequency-
doubled continuous-wave Ar++ ion laser at 244 nm.
The laser was focused on the substrate surface in a spot
with a diameter of 3 pum by means of a UV microscope
objective with 0.4 numerical aperture. The excitation
power was set in the range of 10 to 50 uW. The sample
was imaged through a UV-sensitive camera in order to
visualize the luminescence spot and to locate the NW
with respect to the alignment marks. p-PL spectra were
measured using a Jobin Yvon HR460 spectrometer
(Horiba Ltd., Tokyo, Japan) with a 600- or 1,800-
grooves/mm grating and a charge-coupled device cam-
era. The energy resolution of the setup during these
experiments is around 1 meV. In order to analyze the
polarization of the single NW emission, a linear polari-
zer was placed at the entrance of the spectrometer. For
each individual NW, a series of spectra was collected at
different angles of the polarizer axis, which was varied
over the whole interval 0° to 360° with a 15° step. The
orientation of the NW with respect to the polarizer axis,
as well as its isolation from other dispersed nanowires,
has been assessed by SEM measurements performed
after the optical characterization. The experiment was
carried out on ten NWs, yielding a good reproducibility.
Using the alignment marks as a reference frame, we
identified the polarizer angles corresponding to - (light
with the electric field E L c-axis) and o- (E // c-axis)
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polarizations for each wire. The polarization ratio is
defined as:

P= (I —1,)/(Ir +1s) (1)

where I, and I; are the integrals of the PL intensity
for the m and o polarizations, respectively.

The polarization of the NBE emission is related to
the selection rules for the excitonic transitions, which
can be deduced from the k-p theory [19]. The polariza-
tion ratio of the three exciton types in strain-free crys-
tal can be expressed as a function of the band
parameters of ZnO. The interband momentum-matrix
elements Mfm proportional to the PL intensity for o
and 1 polarization are reported in the Table 1. It
shows that the X, exciton (formed by an electron
bound to a heavy hole) is purely polarized perpendicu-
lar to the c-axis due to the selection rules in wurtzite
crystal. The Xp exciton (an electron bound to a light
hole) is strongly polarized perpendicular to the c-axis,
whereas the X exciton (an electron bound to a split-
off hole) is strongly polarized parallel to the c-axis.
The Xc exciton has a much higher energy than the X,
one (energy difference AEc, between the Xc and X, is
48 meV). Therefore, the NBE photoluminescence is
dominated by the lower-energy X, exciton and, in
consequence, is expected to be strongly polarized per-
pendicular to the c-axis even at room temperature
(kgT =~ 25 meV < AEc,). It should be noted that
many-particle processes can potentially influence the
emission polarization. In the polarization analyses, we
approximate the NBE emission as originating solely
from the X, bound and free excitons and we neglect
the effect of phonon replicas, which are one order of
magnitude weaker than the main peak and which
could not be detected in single nanowire spectra.

The PL spectrum of the NW ensemble collected at 4.2
K is reported in Figure 2a. It presents a broad NBE
emission peaked at 3.357 eV consisting of different con-
tributions from the bound states of the X, exciton and
possibly a contribution of Xy exciton, which cannot be
separately resolved. In addition, a weak shoulder is
observed at high energy (3.41 eV) which is related to
the Xc exciton. The u-PL spectra of two single NWs
recorded with a spectral resolution of 800 peV are

Table 1 Normalized interband squared momentum-
matrix element Mi .

Exciton type E /I c-axis [ZnO value] E 1 c-axis [ZnO value]

Xa 0 0.5
X 0.0057 04965
Xc 0.9929 0.035

For polarization along the c-axis and perpendicular to the c-axis for excitons
Xa, XB, and Xc for ZnO crystal.
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Figure 2 PL and pPL spectra. (a) PL spectrum of the NW
ensemble collected at 4.2 K. (b) pPL spectra of two single
nanowires (blue and red) collected at 4.2 K with a spectral
resolution of 800 peV.

reported in Figure 2b. All spectra exhibit three narrow
peaks with linewidth as low as 1.5 meV. These peaks
can be attributed to the different bound states of X,
exciton. The two predominant peaks at 3.357 and 3.361
eV are attributed to the Iy and I lines related to the
neutral donor-bound exciton D°X,, respectively, bound
to Al and In [25]. Alternatively, as studied by Meyer et
al. [26], theses lines could be related to the neutral
donor-bound exciton D°X, and D°Xg. The latter inter-
pretation is less probable since the relative intensity of
the peaks does not match with the expected population
of the corresponding excitonic states at low tempera-
ture. In the following analyses, we use the first attribu-
tion; however, the conclusions also remain valid for the
second one. At higher energy (3.366 eV), we notice a
third peak related to a surface bound X, exciton
[27,28]. The intensity of this peak varies from wire to
wire due to the NW size dispersion.

Typical p-PL spectra recorded at T = 4.2 K for o-
and m-polarizations are reported in Figure 3. By chan-
ging the polarization from ¢ to m, we observe that the
spectral shape remains the same within the experimen-
tal accuracy, but the PL intensity integrated on the
entire spectrum varies of about a factor of 12. This
large contrast corresponds to a polarization ratio as
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Figure 3 p-PL spectra of a single nanowire on carbon-formvar
membrane. Collected at 4.2 K for £ // ¢ and E 1 ¢ with a spectral
resolution of 1.5 meV. The polarization diagram and SEM image of a
studied nanowire lying on the substrate are reported in the inset.

high as 0.85. The statistics over ten NWs yields an
average polarization ratio of 0.84 with a standard
deviation of 0.05. The dependence of the PL intensity
on the angle of polarization can be well fitted by a
cosine-squared law I ~ cos*(11/2 - ), where 0 is the
angle between the analyzer and the NW axis deter-
mined from the SEM analyses. The maximum lumines-
cence intensity is obtained when the analyzer is
perpendicular to the c-axis of the NW (m-polarization).
From the polarization selection rules, an even higher
polarization ratio of 0.98 is expected. The difference
between the experimental observation and the theoreti-
cal prediction can possibly be explained by a partial
depolarization due to the diffraction from the NW of
the luminescence exiting the NW extremities. In addi-
tion, the dielectric contrast between the NW and its
environment, and the elongated shape of ZnO NWs
with small diameter (<80 nm), should favor the emis-
sion of light polarized parallel to the NW axis [20,21].
However, this effect cannot compete with the high ani-
sotropy of the emission polarization. The polarization
of the ZnO luminescence perpendicular to the NW
axis is dictated by the excitonic selection rules.

The temperature dependence of the polarization ratio
integrated on the whole spectrum is reported in the
inset to the Figure 4. The polarization ratio decreases
when the temperature increases from P = 0.85 at T = 4
Kto P =0.63 at T = 300 K. This effect is due to the
progressive thermal activation of higher energy excitons,
in particular of the Xc having a different symmetry.
However, the X population remains weak even at room
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Figure 4 Polarization ratio of the PL emission from one of the
analyzed nanowires. As a function of the photon energy for
temperatures T = 70 K (full black curve) and 150 K (full red curve).
The normalized PL spectra recorded at T = 70 K (dashed black
curve) and 100 K (dashed red curve) are reported as reference. The
inset reports the polarization ratio of the whole spectrum as a
function of temperature.

temperature, which explains a high polarization ratio
(above 0.63) over the whole interval T = 4 to 300 K.

It is difficult to observe the gradual activation of the
Xc emission directly from the pu-PL spectra because of
the very weak signal associated with this transition.
However, the X luminescence can be evidenced by ana-
lyzing the energy-dependent polarization ratio P(E):

P(E) = (I(E)x — I(E)s )/ (I(E)x + I(E)o) 2)

at different temperatures, where I(E),, is the PL inten-
sity at energy E in the p polarization. Figure 4 reports
the P(E) for 70 and 150 K. (The temperature range is
restricted within 70 to 150 K due to the extremely low
signal above 3.38 eV at low temperatures and to the
decrease of the overall luminescence intensity at high
temperature). For the energy region between 3.28 and
3.38 eV, the signal arises from the X, and thermally
activated Xy excitonic transitions. Therefore, the polari-
zation ratio remains high (>0.85) in this interval and is
nearly temperature independent. At higher energy,
around 3.41 eV, the polarization ratio decreases in cor-
respondence of the emission of the X¢ exciton. It should
be noted that in spite of the weak signal in the spectral
range corresponding to the Xc emission, the signal-to-
noise ratio is about 20 at 3.40 eV. Therefore, the maxi-
mum possible error on the polarization ratio induced by
the noise is less than 0.1. With increasing temperature,
the dip in the P(E) dependence is amplified and
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progressively shifts towards lower energy. This behavior
reflects the progressive thermal activation of the X¢
excitonic emission and the ZnO bandgap reduction
described by the Varshni law [29].

Conclusions

In conclusion, we have studied the optical properties
of ZnO nanowires grown by evaporation technique.
Nanowires have defect-free single crystalline structure
as shown by high-resolutions TEM (HRTEM) analysis.
The nanowires are characterized by an intense photo-
luminescence with a spectral broadening below 2 meV.
We have investigated the polarization dependence of
the near-band-edge photoluminescence in ZnO strain-
free nanowires. They exhibit a polarization ratio as
high as 0.84. We show that these observations are con-
sistent with the k-p theory and with the exciton selec-
tion rules. In particular, the weak dependence of the
integrated polarization ratio P is a consequence of the
large energy difference between X, and X excitons.
However, the analysis of the energy-resolved polariza-
tion ratio P(E) at different temperatures allows for the
observation of the progressive activation of the Xc
exciton.
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transmission electron microscopy.
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