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Abstract

A feasible and effective self-assembly method to synthesize different scale coordination polymers in highly dilute
solution (from nanocrystals to microcrystals and to bulk crystals) without any blocking agent has been described.
The growth of crystalline particles was controlled by removing the particles at different reaction times to interrupt
the growth at the desired size. The nano and microscale particles show better catalytic conversions and
selectivities in the hydroxylation of phenols than the bulk crystals.
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Introduction

Within the large family of materials science, nano- and
microscale materials are of particular interest for their
potential applications in many areas [1-10]. In many
cases, these materials exhibit an increase of macroscopic
properties due to the microscopic size effect and to the
surface effect [11-13]. However, to date, the vast majority
of work on nano- or micro-materials has concentrated
on purely inorganic compounds or clusters [14-16].
Recently, along with the development of metal-organic
framework materials [17,18], a new class of functiona-
lized organic-inorganic hydrid nanomaterial, commonly
called microscale coordination polymers (MCPs) [19-21],
has received great attention. These materials exhibit a
higher level of structural tailorability, with size- and mor-
phology-dependent properties. These structures can also
exhibit microporosity, tunable fluorescence, magnetic
susceptibility, and unusual catalytic activity and selectiv-
ity. Thus far, a variety of methods now exists for making
numerous compositions with modest control over parti-
cle size and shape as well as properties. There are two
very different strategies to synthesize catalytically active
MCPs. In the first approach, the metal centers have
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unsaturated coordination environments which are uti-
lized as catalytically active sites. In the other approach,
catalytic sites are incorporated directly into the bridging
ligands used to construct MCPs [22,23]. For synthesis of
nanomaterials with a specific shape and function, it often
uses a soft or hard template. However in the absence of a
template, solution-based methods for producing low-
dimensional structures require precise tuning of nuclea-
tion and growth steps to achieve crystallographic control.
These processes are governed by thermodynamic (e.g.,
temperature, reduction potential) and kinetic (e.g., reac-
tant concentration, diffusion, solubility, reaction rate)
parameters [6]. Recently some researchers have reported
methods to control the particle shape by the addition of
a blocking agent or no blocking agent [8-10]. However,
there is still no facile way to microfabricate hierarchical
MCPs and there are few examples of such MCPs with
catalytic properties. Therefore it is attractive to establish
a synthetic strategy for the preparation of hierarchical
MCPs with catalytic activity. To this end, the possibility
of producing MCPs from the growing, catalytically active
CP is considered. The bulk material always has a growth
process and the size of the particle could be controlled
by interrupting the growth at different stages in highly
dilute solution, which also is a common method to
synthesize macrocyclic compounds [24-26].
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Hydroxylation of phenols with hydrogen peroxide is a
widely used green method of preparing biphenols and is
an industrially important reaction for the production of
phenol derivatives, which have several large-scale indus-
trial applications in the chemical, pharmaceutical and
food industries [27]. Transition metal-based complexes
and oxides are well-known catalysts in this reaction
[28-34]. Herein, we present the size controllable synth-
esis of two series of hierarchical MCPs using a simple
method under mild conditions. The catalytic activities of
the crystalline MCPs were investigated in the hydroxyla-
tion of phenol (Figure 1). The as-synthesized MCPs {{M
(phen)(C,04)(H,0)] H,O, M = Cu(Il) or Co(Il), phen =
1,10-phenanthroline} exhibit better catalytic activities
than the CP in the hydroxylation of phenols with H,O,
in aqueous solution and mild conditions, and a high
conversion (73.08%, 50°C, 5 h) and high selectivity for
hydroquinone with a maximum hydroquinone (HQ)/
catechol (CAT) ratio of 3.83.

Experimental

Materials and physical measurements

All commercially available chemicals were of reagent
grade and used as received without further purification.
Analyses for carbon, hydrogen and nitrogen were per-
formed on a Perkin-Elmer 1400C analyzer (PerkinElmer,
Waltham, MA, USA). Crystallographic X-ray diffraction
data was collected on a Siemens SMART CCD area-detec-
tor diffractometer (Siemens, Munich, Germany) equipped
with graphite-monochromatic MoKo radiation (A =
0.71073 A). Lorentz polarization and absorption correc-
tions were applied. The structures were solved by direct
methods and refined with the full-matrix least-squares
technique using SHELXTL version 5.1 [35]. Anisotropic
thermal parameters were assigned to all non-hydrogen
atoms. Organic hydrogen atoms were generated geometri-
cally (C-H 0.96 A) and refined with isotropic temperature
factors. Hydrogen atoms on oxygen atoms were located
from difference maps and refined isotropically with geo-
metric AFIX restraints of 0.85-0.95 A. Powder X-ray dif-
fraction (PXRD) was measured on a X’ Pert Pro MPD
(Philips Corporation, Holland, Netherlands). Infrared
spectrum was recorded on a Nexus-870 spectrometer in
the range of 4,000-400 cm™ using the KBr disk method.
Thermogravimetric analysis was performed on a Pyris 1

OH
OH OH
MCPs OH
. +
H,0, HO,
OH
Figure 1 Catalytic phenol hydroxylation by H20,.
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TGA in the range of 30-700°C with a heating rate of 10°C/
min. Scanning electron microscopy (SEM) images were
collected on a JEOL-2010 Electron Microscopy (JEOL,
Tokyo, Japan). Qualitative and quantitative analysis of
hydroxylation products were carried out on an Agilent
1200 liquid chromatograph (Agilent Technologies, Santa
Clara, CA, USA). Optical images were collected on a
BK51-DP70 All-powerful Microscope. Chromatography
column: ZORBAX Eclipse XDB-C18 4.6 x 150 mm,
mobile phase: 1% HAc-MeOH (1:1, v/v); mobile phase
velocity, 0.8 ml/min; column temperature, 30°C; sample
volume, 20 pl; wavelength of ultraviolet detector, 277 nm.

Synthesis of two series of hierarchical MCPs materials
Two series of hierarchical MCPs {[M(phen)(C,0,)
(H,0)]-H,O, phen = 1,10-phenanthroline, M = Cu(II)
(MCPs-1) and M = Co(II)(MCPs-2)} were made using the
following general procedure: a mixed solution (300 mL,
CH3CH,OH/H,O = 1:1, v/v) of 1,10-phenanthroline
(10 mmol) was added to an aqueous solution (250 mL) of
CuSO, (10 mmol) or CoSO,4 (10 mmol) over a period of
30 min, with stirring at 1,000 rpm. After 30 min, sodium
oxalate (10 mmol) in 1,000 mL water was added with stir-
ring at 1,400 rpm, and stopped at different times to pro-
duce hierarchical materials(20 minutes for nanoscale, 2 h
for microscale, more than 6 h for macroscale as well as
7 days for the single crystals). The product was separated
by a high speed centrifuge at 16,500 rpm at these times to
obtain hierarchical MCPs. Yields for MCPs-1: nano parti-
cle, 23%; micro particle, 58%; macro particle, 76%. Analysis
calculated for C;4,H;,CulN,Og: C, 45.72%; H, 3.29%; N,
7.62%. Found: C, 45.68%; H, 3.34%; N, 7.59%.

The yields for MCPs-2: nano particle, 20%; micro par-
ticle, 43%; macro particle, 64%. Analysis calculated for
C14H15,CoN,O06: C, 46.30%; H, 3.33%; N, 7.71%. Found:
C, 46.29%; H, 3.40%; N, 7.68%.

Catalysis experiments

The as-synthesized particles hardly dissolve in the reaction
solution. The catalytic activities for the hydroxylation of
phenols were measured in a 100 ml glass reaction flask
fitted with a water-cooled condenser. After addition of the
reagents, the mixture was heated to 50°C with stirring.
Hydrogen peroxide (1.0 ml, 30%, w/v) was added dropwise
(over a period of about 30 min) to the magnetically stirred
solution at the desired conditions. The course of the reac-
tion and the products were monitored by periodically
withdrawing a small sample (20 pl) of the reaction mix-
ture, which was analyzed by liquid chromatography.

Results and discussion
Synthesis of MCPs-1 and 2
CuSO, or CoSOy, 1,10-phenanthroline and sodium oxa-
late were chosen to synthesize new MCPs. The MCPs
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were prepared by the stoichiometric reaction of CuSO,4/
CoSO, with 1,10-phenanthroline in mixed solution
(CH3CH,OH:H,0 = 1:1), followed by reaction with a
highly dilute solution of sodium oxalate for different
reaction times to achieve the series of products named
MCPs (Figure 2).

Structural characterization of copper and cobalt
compounds

The crystal structure of MCPs-1 with the CCDC num-
ber 667029 demonstrates that the copper complex has a
mononuclear motif, where each Cu (II) ion is bound by
two O atoms from one oxalate anion, one water mole-
cule and two N atoms from one 1,10-phenanthroline, in
a slightly distorted square pyramidal coordination geo-
metry (Figure 3, and Additional file 1). It is worth not-
ing that hydrogen bonds and pi-pi stacking interactions
play key roles in the fast formation of the hierarchical
MCPs-1.

The experimental conditions were modulated to arrest
the polymerization process at early stages to generate
nano and microscale MCPs particles [8,34]. The MCPs’
size increased from nanorods to microrods and ulti-
mately became macrorods (shown in Figure 4a, b, ¢)
with the increase in crystallization time. When the reac-
tion time reached 20 min, the mixed solution became a
little turbid, due to the nano-sized crystalline rods
formed. Centrifugal separation of this solution gave blue
nano-sized particles and the products have basically the
same cuboid morphology (Figure 4a). After about 2 h,
microscale crystalline rods were obtained by centrifugal
separation of another sample solution (Figure 4b) which
has the same morphology as the nanoscale rods. Finally,
the third sample underwent 6-h crystallization time, the
rods became macroscale (Figure 4c) and single crystals
suitable for single crystal X-ray diffraction study were
obtained after 1 week at room temperature. The field-

[M(phen)]SO4 + sodium oxalate

High dilution in

CH3CH,0H/H,0 Room temperature

.~ g -

macrorod microrod nanorod

Figure 2 Growth-phase control of rods using different
crystallization times.
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emission scanning electron microscopy and optical
microscopy images show the growth of crystalline
nanorods to microrods and to macrorods. All of the as-
synthesized MCPs were insoluble in H,O, acetonitrile,
methanol, and ethanol.

The relative thermal stabilities of the as-synthesized
crystalline MCPs-1 were studied using thermogravi-
metric analysis. Thermogravimetric analysis of products
showed the loss of one lattice water and one coordi-
nated water per formula unit in the temperature range
80-100°C, and the loss of the C,0,* between 175°C and
205°C. The curve between 205°C and 260°C corresponds
to the volatilized phen molecule (Figure 5). It may be
concluded that the as-synthesized MCPs-1 is stable
between room temperature and 80°C.

Powder X-ray diffraction (PXRD) was also used to
investigate the molecular connectivity of MCPs-1.
Experimental PXRD patterns of polymorphic particles
are presented in Figure 6. All the sharp peaks of the dif-
ferent scale particles mean that they all are crystals. The
powder patterns of different scale particles are well
coincident with each other and it means that different
forms of MCPs-1 have the same structure.

MCPs-2 was prepared with hierarchical size using a
similar method to above MCPs-1 (Figure 7a, b, ¢). The
morphologies of MCPs-2 were regular rectangular plates
with well-defined edges. Though single crystals suitable
for X-ray crystallography were not obtained, the pro-
ducts studied by powder XRD (Figure 8) have the same
chemical connectivity as MCPs-1 in terms of the poly-
mer backbone but a different metal center, as the pow-
der patterns of MCPs-2 are well coincident with the
simulated X-ray diffraction pattern calculated from the
single crystal data of MCPs-1.

Catalytic actions of MCPs-1 and 2

To determine suitable reaction conditions for maximum
conversion, studies of various reaction parameters were
performed (Additional file 2) and the optimum reaction
parameters were found to be: the mixture of reagents
Phenol (0.2 g) and MCPs catalyst (10 mg) was heated to
50°C with stirring in 40 ml distilled water. Hydrogen per-
oxide (1.0 ml; 30%, w/v) was added dropwise to the mag-
netically stirred solution. Although many kinds of
catalyst, such as metal oxides, metal complexes, zeolites,
and zeolite-encapsulated metal complexes, have been
developed for phenol hydroxylation (and especially for
oxidation of phenols), the HQ/CAT ratio generally is
much less than that of the MCPs reported here [35-37].
The Italian company Enichem (Rome, Italy) has success-
fully developed a titanosilicate molecular sieve catalyst
(TS-1) with MFI structure for the reaction. The observed
conversion of phenol is up to 25%, of which the selectiv-
ity of diphenols is about 94% (HQ/CAT = 1:1) [38].
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Figure 3 Mononuclear unit for complex 1 and hydrogen-bonded framework. (Left) ORTEP view with atom labeling of the mononuclear
unit for complex 1 (displacement ellipsoids drawn at 30% probability, H atoms and one lattice water molecule are omitted for clarity,). (Right)
Schematic representation of hydrogen-bonded framework of the CPs viewed along a axis.

Compared to this TS-1, the MCPs-1 display mild syn-
thetic conditions and exhibit a higher level of structural
tailorability and therefore tunable properties via modifi-
cation of their components (metal ions or ligand). All the
as-synthesized MCPs-1 acted as heterogeneous catalysts
and consistently showed remarkably high conversion
(73% for nanorods at 5 h, 45.79% for microrods, and
36.17% for large crystals) which increased dramatically
with a decrease in the size of MCPs-1 (Table 1), and very
high selectivity (HQ/CAT = 3.83 for nanorods at 3 h).
Furthermore, when the reaction time reached 6 h, the
solvent color became a little yellow due to the further
oxidation of HQ to cyclohexa-2,5-diene-1,4-dione
[39,40]. In a general way, product distribution analysis
shows that CAT and HQ are the major reaction pro-
ducts. The series of MCPs-2 exhibits a similar trend to
MCPS-1 in activities and product selectivities for the
reaction of phenol with H,O, (Shown in Table 2). From
the two tables, we can see that as the diameter of the het-
erogeneous catalyst, i.e., MCPs-1 and MCPs-2, was

decreased, higher conversions were obtained. The differ-
ences in catalytic activity of different-sized particles in
the conversion of phenol indicate a significant surface
effect of the nano or micro particles, which plays an
important role in the conversion of phenol. It was also
found that the conversion is much higher for MCPs-1
catalysts than for MCPs-2 catalysts. This implies that
MCPs-1 catalysts containing Cu(II) ions are more active
than MCPs-2 catalysts containing Co(II) ions. This obser-
vation is quite similar to those reported for other com-
plexes [26-32].

The recyclability of the MCPs-1 has been tested for a
typical run, by filtering the reaction mixture after 5 h.
The used catalyst was activated by stirring the catalyst
with double distilled water for 1 h followed by filtration.
This process was repeated twice and the catalyst was
dried at 60°C under nitrogen for 1 h. It was reused for a
run under similar conditions. It showed similar catalytic
activity for the first cycle and there was a very minor
loss for the second cycle (Table 3). Experimental PXRD

image of macroscale CPs.

Figure 4 Images of MCPs-1. (a, b) Representative SEM images of the hierarchical MCPs-1: (a) nanoscale CPs and (b) microscale CPs. (c) optical
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Figure 5 TGA and DTG curves of the as-synthesized MCPs-1.
.
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patterns of the used catalyst and fresh catalyst were also
nearly the same (Shown in Figure 9). All these studies
suggest that the catalyst is sufficiently stable and recycl-
able. The filtrate collected after separating the used cata-
lyst was placed in the reaction flask and the reaction
was continued for another 5 h after adding fresh H,O,.
No significant change was observed in the percentage
conversion of phenol.

Conclusion

In summary, two series of nanocrystals, microcrystals
and bulk crystals of MCPs-1 and MCPs-2 have been
fabricated by a straightforward and effective self-assem-
bly method in highly dilute solution under mild condi-
tions. In the hydroxylation of phenols, compared with
other catalysts, the as-synthesized MCPs displayed a
good phenol conversion ratio (73.08%) and high selectiv-
ity for the hydroquinone (HQ/CAT ratio of 3.83). The
catalyst is stable and recyclable. It can be effectively
used as a heterogeneous catalyst.
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Figure 6 Comparison of the experimental powder diffraction
patterns of MCPs-1.
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Figure 7 Images of MCPs-2. (a, b) Representative SEM images of the
hierarchical MCPs-2: (a) nanoscale CPs and (b) microscale CPs. (c) optical
image of macroscale CPs, and (d) powder XRD patterns: (bottom)
simulated XRD pattern, (top) experimental data of XRD pattern.
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Figure 8 X-ray diffraction patterns of MCPs-2.
.

Table 1 Yields and selectivities of biphenols in the
presence of MCPs-1

Catalyst Conversion (wt.%) HQ/CAT ratio
50°C, 3 h 50°C, 5 h 50°C, 3 h 50°C, 5 h
Nanorods 62.92 73.08 383 381
Microrods 3651 45.79 379 376
Macrorods 28.75 36.17 372 372

HQ, hydroquinone; CAT, catechol.
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Table 2 Yields and selectivities of biphenols in the presence of MCPs-2
Catalyst Conversion (wt.%) HQ/CAT ratio
50°C,3 h 50°C, 5 h 50°C,3 h 50°C, 5 h
Nanorods 1853 23.75 3.56 351
Microrods 15.18 19.63 355 351
Macrorods 9.82 11.97 3.56 3.50
HQ, hydroquinone; CAT, catechol.
Table 3 The recyclability of the MCPs-1
Catalyst First time Second time Third time
Conversion HQ/CAT Rate of conversion HQ/CAT Rate of conversion HQ/CAT Rate of
(wt.%) 5 h ratio recovery, % (wt.%) 5 h ratio recovery, % (wt.%) 5 h ratio recovery, %
Nanorods 73.08 381 753 5475 379 635 47.53 3.80 725
Microrods 4579 376 86.0 4246 378 854 4137 374 84.2
Macrorods 36.17 3.72 96.2 36.14 3.51 95.8 35.89 3.50 93.7

HQ, hydroquinone; CAT, catechol.

It was also found that the nature of the central metal
ion in the complexes and the surface effect of nano or
micro particles have marked effects on phenol conver-
sion according to some reports. The size control
method presented herein provides a simple approach for
preparation of MCPs with better catalytic properties. It
also broadens the range of applications of MCPs materi-
als (Figure 8; Additional files 1 and 2).

Intensity (a. u.)

Simulated form of Cu complex
T T T
10 20 30

20

Figure 9 Comparison of the experimental powder diffraction
patterns of the recycled MCPs-1.

Additional material

Additional file 1: Crystal Data of MCPs-1. crystal datarar, 51 K

Additional file 2: Studies of Various Reaction Parameters. supp1.doc,
56 K.
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