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potential in bilayer graphene in the presence of a
magnetic field
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Abstract

We investigate the effect of an external magnetic field on the carrier states that are localized at a potential kink
and a kink-antikink in bilayer graphene. These chiral states are localized at the interface between two potential
regions with opposite signs.
PACS numbers: 71.10.Pm, 73.21.-b, 81.05.Uw

Introduction
Carbon-based electronic structures have been the focus of
intense research since the discovery of fullerenes and car-
bon nanotubes [1]. More recently, the production of
atomic layers of hexagonal carbon (graphene) has renewed
that interest, with the observation of striking mechanical
and electronic properties, as well as ultrarelativistic-like
phenomena in condensed matter systems [2-4]. In that
context, bilayer graphene (BLG), which is a system with
two coupled sheets of graphene, has been shown to have
features that make it a possible substitute of silicon in
microelectronic devices. The carrier dispersion of pristine
BLG is gapless and approximately parabolic at two points
in the Brillouin zone (K and K’). However, it has been
found that the application of perpendicular electric fields
produced by external gates deposited on the BLG surface
can induce a gap in the spectrum. The electric field creates
a charge imbalance between the layers which leads to a
gap in the spectrum [5,6]. The tailoring of the gap by an
external field may be particularly useful for the develop-
ment of devices. It has been recently recognized that a
tunable energy gap in BLG can allow the observation of
new confined electronic states [7,8], which could be
obtained by applying a spatially varying potential profile to
create a position-dependent gap analogous to semiconduc-
tor heterojunctions.

An alternative way to create one dimensional localized
states in BLG has recently been suggested by Martin et al.
[9] and relies on the creation of a potential “kink” by an
asymmetric potential profile (see Figure 1). It has been
shown that localized chiral states arise at the location of
the kink, with energies inside the energy gap. These states
correspond to uni-directional motion of electrons which
are analogous to the edge states in a quantum Hall system
and show a valley-dependent propagation along the kink.
From a practical standpoint, the kinks may be envisaged
as configurable metallic nanowires embedded in a semi-
conductor medium. Moreover, the carrier states in this
system are expected to be robust with regards to scattering
and may display Luttinger liquid behavior [10]. Such kink
potentials can be realized in e.g. p-n junctions. Recently
the transport properties of p-n-p junctions in bilayer gra-
phene were investigated experimentally in the presence of
a perpendicular magnetic field [11].
An additional tool for the manipulation of charge

states is the use of magnetic fields. The application of
an external magnetic field perpendicular to the BLG
sheet causes the appearance of Landau levels which can
be significantly modified by the induced gap, leading to
effect s such as the lifting of valley degeneracy caused
by the breaking of the inversion symmetry due to the
electrostatic bias [12,13]. The presence of a magnetic
field in conjunction with electrostatic potential barriers
in BLG has been shown to lead to a rich set of beha-
viors in which Landau quantization competes with the
electrostatic confinement-induced quantization [14].

* Correspondence: pereira@fisica.ufc.br
2Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará,
60455-760, Brazil
Full list of author information is available at the end of the article

Zarenia et al. Nanoscale Research Letters 2011, 6:452
http://www.nanoscalereslett.com/content/6/1/452

© 2011 Zarenia et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:pereira@fisica.ufc.br
http://creativecommons.org/licenses/by/2.0


In the present work we investigate the properties of
localized states in a kink potential profile under a per-
pendicular external magnetic field, both for the case of a
single potential kink, as well as for a kink-antikink pair.
One advantage of such a setup is the fact that in an
experimental realization of this system the number of
one-dimensional metallic channels and their subsequent
magnetic response can be configurable, by controlling
the gate voltages. As shown by our numerical results,
the influence of the magnetic field can be strikingly dis-
tinct for single and double kinks.

Model
We employ a reduced two-band continuum model to
describe the BG sheet. In this model, the system is
described by four sublattices in the upper (A, B) and
lower (A’ and B’) layers [2]. The interlayer coupling is
given by the hopping parameter t ≈ 400 meV between
sites A and B’. The Hamiltonian around the K valley of
the first Brillouin zone can be written as

H = −1
t

[
0 (π†)2

(π)2 0

]
+

[
U(x) 0
0 −U(x)

]
(1)

where π = vF (px + ipy), px, y = -iħ∂x,y + eAx,y is the
momentum operator in the presence of an external
magnetic field with Ax,y being the components of the

vector potential A, vF = 106 m/s is the Fermi velocity, U
(x) and -U(x) is the electrostatic potential applied to the
upper and lower layers, respectively. The eigenstates of
the Hamiltonian Eq. (1) are two-component spinors
Ψ(x, y) = [ψa (x, y), ψb(x, y)]

T, where ψa,b are the envel-
ope functions associated with the probability amplitudes
at sublattices A and B’ at the respective layers of the
BLG sheet. We notice that [H, py] = 0 and consequently
the momentum along the y direction is a conserved
quantity and therefore we can write,

ψ(x, y) = eikyy
(

ϕa(x)

ϕb(x)

)
(2)

where, ky are the wave vector along the y direction.
When applying a perpendicular magnetic field to the
bilayer sheet we employ the Landau gauge for the vector
potential A = (0, B0x, 0). The Hamiltonian (1) acts on
the wave function of Eq. (2) which leads to the following
coupled second-order differential equations,

[
∂

∂x′ + (k′
y + βx′)]2ϕb = [ε − u(x′)]ϕa, (3a)

[
∂

∂x′ − (k′
y + βx′)]2ϕa = [ε + u(x′)]ϕb. (3b)

�B
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Figure 1 (Color online) Schematic illustration of the bilayer graphene device for the creation of a kink potential. Applied gated voltage
to the upper and lower layers with opposite sign induce a spacial dependent electric field Ee. An external magnetic field B = B0 ẑ , is applied
perpendicular to the bilayer graphene sheets.
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where, in the above equations we used the dimension-
less units l = ħvF/t = 1.6455 nm, x’ = x/l, k′

y = kyl , ε =

E/t, u(x’) = U(x)/t, b = [eB0/ħ]l
2 (= 0.0041 for B0 = 1 T).

The step-like kink (see Figure 1) is modeled by,

u(x′) = ub tanh(x′/δ), −∞ < x′ < ∞ (4)

where, ub is the maximum value of the gate voltage in
dimensionless unit in each BLG layer. Here, δ denotes
the width of the region in which the potential switches
its sign in each layer. This parameter is determined by
the distance between the gates used to create the energy
gap. We solved numerically Eqs. (3) using the finite ele-
ment technique to obtain the the spectrum as function
of the magnetic field and the potential parameters.

I. Numerical Results
Figure 2(a) shows the spectrum for a potential kink as
function of the wavevector along the kink for zero mag-
netic field. In this case, the potential kink is sharp, i.e. δ =
1 in Eq. (4). It is seen that the solutions of Eq. (3) for B0 =
0 are related by the transformations ja ® - jb, jb ® ja,
ky ® - ky and ε ® -ε. The shaded region corresponds to
the continuum of free states. The dashed horizontal lines
correspond to ε = ±ub and ε = 0, with ub = 0.25. These
results are found in the vicinity of a single valley (K) and
show the unidirectional character of the propagation, in
which only states with positive group velocity are obtained.
Notice that the spectrum has the property
E(k′

y) = −E(−k′
y) . For localized states around the K’ valley,

we have EK’ (ky) = - EK (ky). Panels (b) and (c) of Figure 2
present the spinor components and the probability density
for the states indicated by the arrows in panel (a), corre-

sponding to k′
y = −0.28 (b) and k′

y = 0.28 (c). These elec-
tron states are localized at the potential kink.
Figure 3 shows the dependence of the single kink

energies on the external magnetic field for (a) k′
y = 0

and (b) k′
y = 0.15 . The branches that appear for |E/t| >

0.25 correspond to Landau levels that arise from the
continuum of free states. It is seen that the spectrum of
confined states is very weakly influenced by the mag-
netic field. That is a consequence of the strong confine-
ment of the states in the kink potential. In a
semiclassical view, the movement of the carriers is con-
strained by the potential, which prevents the formation
of cyclotron orbits.
We also calculate the oscillator strength for electric

dipole transitions between the topological energy levels.
The oscillator strength |<ψ*|reiθ| ψ>|2 is given by

| < ψ†|x|ψ > |2 =

[∑
i

∫
ϕ∗
i (x

′)x′ϕi(x′)dx′
]2

(5)

where, i = a, b. Figure 4 shows the oscillator strength
and the corresponding transition energy ΔE for the
topological states of a single kink profile. The results are
presented as function of k′

y (panels (a,c)) and the exter-

nal magnetic field (panels (b,d)). The topological states
are indicated by (1), (2) in Figure 2(a). The
E(k′

y) = −E(−k′
y) property of the topological levels leads

to a symmetric behavior around k′
y = 0 for the oscillator

strength. The results in Figure 4(a) show a zero value
for the oscillator strength at k′

y = 0 . As shown in the
inset of Figure 4(a) the wavespinors for the first state
ϕa1,b1 and the second one ϕa2,b2 at k′

y = 0 are related as
ϕa1 = −ϕb2 and ϕb1 = ϕa2 which results | <ψ†| x |ψ > |
2 = 0 in Eq. (5). Panel 4(b) presents the oscillator
strength as function of magnetic field for several values
of k′

y . The presence of an external magnetic field

decreases the oscillator strength at large momentum
whereas the B0 = 0 result exhibits an increase in the
oscillator strength (blue dashed curve in (a)). The reason
is that a large magnetic field together with a large
momentum weakly affects the topological states of the
single kink profile (see Figure 3(b)). Note that the oscil-
lator strength vs magnetic field is zero for k′

y = 0

(dotted line in panel (b)).
Next we considered a potential profile with a kink-

antikink. Figure 5 shows the spectrum of localized states
for B0 = 0 (a) and B0 = 3 T (b). The results show a shift
of the four mid-gap energy branches as the magnetic
field increases. In addition, the continuum of free states
at zero magnetic field is replaced by a set of Landau
levels for ε >ub. The spinor components and probability
densities associated with the points indicated by arrows
in Figure 5(a) and Figure 5(b) are shown in Figure 6. In
Figure 6(a) the wavefunction shows the overlap between
states localized in both the kink and antikink, for zero
magnetic field. With increasing wavevector, the states
become strongly localized in either the kink (b) or anti-
kink (c). Panels (d) to (f) show the wavefunctions for
non-zero magnetic field. The states at k′

y = 0 , (panel (d))
show a shift of the probability density towards the cen-
tral region of the potential. That is caused by the addi-
tional confinement brought about by the magnetic field.
However, for a larger value of the wavevector, the wave-
functions are only weakly affected by the field, due to
the strong localization of the states.
Figure 7 displays the energy levels of a kink-antikink

potential as function of an external magnetic field for
(a) k′

y = 0 and (b) k′
y = 0.2 . For the kink-antikink case,

the overlap between the states associated with each con-
finement region allows the formation of Landau orbits.
Therefore, in contrast to the single kink profile, the
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(1)

(2)

Figure 2 Energy levels for a single kink profile on bilayer graphene in the absence of magnetic field with ub = 0.25 and δ = 1. The
right panels show the wave spinors and probability density corresponding to the states that are indicated by arrows in panel (a).

(a) (b)

Figure 3 Energy levels of a single kink profile in bilayer graphene as function of external magnetic field B0 with the same parameters
as Fig. 2 for (a) k′

y=0and (b) k′
y = 0.15.
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proximity of an antikink induces a strong dependence of
the states on the external field.
The localization of the states is reflected in the posi-

tion dependence of the current. The current in the y-
direction is obtained using

jy = ivF[	†(∂xσy − ∂yσx)	 + 	T(∂xσy + ∂yσx)	∗] (6)

where 	(x, y) = eikyy[ϕa(x),ϕb(x)]T. we rewrite Eq. (6)
in the following form

jy = 2vF[Re{ϕ∗
a ∂xϕb − ϕ∗

b ∂xϕa} + 2kyRe{ϕ∗
aϕb}]. (7)

The x-component of the current vanishes for the con-
fined states. It should be noticed that a non-zero current
can be found for E = 0, as can be deduced from the

0

0.05

0.1

0.15

0.2
O

sc
il
la

to
r

st
re

n
g
th

−0.2 −0.1 0 0.1 0.2

0.29

0.3

0.31

0.32

0.33

kyl

Δ
E

/
t

−10 0 10
B0 (T )

−15 0 15
x/l

(b)

(d)(c)

(a)B0 = 5 T

B0 = 0 T

k′
y = 0.15

k′
y = 0.1

k′
y = 0

ϕa1
ϕb1

ϕa2,

ϕb2

Figure 4 (Color online) Oscillator strength for the transition between the topological states of the single kink profile (The states are
labeled by (1), (2) in Fig. 2) and the corresponding transition energies ΔE as function of (a,c) the y-component of the wavelength
k′
y = kyl and (b,d) the external magnetic field B0. The inset in (a) shows the wavespinors for kyl = 0.
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dispersion relations. Figure 8 shows plots of the y-com-
ponent of the current density as function of x for the
states labelled (1) to (6) in panels (a) and (b) of Figure
7. For k′

y = 0 the results presented in Figure 8(a) show a

persistent current carried by each kink region, irrespec-
tive of the direction of B0, as exemplified by the states
(1) and (2) which correspond to opposite directions of
magnetic field. For non-zero wave vectors, however, as

(1)

(2)

(3)

Figure 5 Energy levels of a kink-antikink profile on bilayer graphene with ub = 0.25 and δ = 1 for (a) B0 = 0 T and (b) B0 = 3 T. The
kinks are located at x’ = ±15 (or x ≈ ± 25 nm in real units).

Zarenia et al. Nanoscale Research Letters 2011, 6:452
http://www.nanoscalereslett.com/content/6/1/452

Page 6 of 10



shown in panels (b) and (c), the current is strongly loca-
lized around either potential kink. In Figure 8(b), the
density current curve shows an additional peak caused
by a stronger magnetic field (B0 ≈ 10 T ).
Figure 9 displays the oscillator strength and the corre-

sponding transition energy for the mid-gap levels of the
kink-antikink potentials as function of (a,c) k′

y and (b,d)

external magnetic field B0 (the energy branches are
labeled by (1), (2), (3) in Figure 5(a)). The wavefunction
for the energies corresponding to the kink states (1), (3)
are localized around x’ = d whereas the antikink energy
levels confine the carriers around x = - d and conse-
quently the oscillator strength by the transition between
the kink and the antikink states (e.g. 1 ® 2) is zero in
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Figure 6 Wave spinors, �a, �b and the corresponding probability density for the points in the energy spectrum which are indicated in
Fig. 5 by arrows.
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the absence or either presence of magnetic field (blue
solid curves in panels (a,b)). The inset of panel (a) indi-
cates that the wavespinors satisfy the ϕa1 = ϕb3 and
ϕb1 = −ϕa3 relations at k′

y = 0 and B0 = 0 which leads to

a zero oscillator strength for the 1 ® 3 transition. In
contrast to the single kink profile the shift in the intra-
gap energies of the kink-antikink potential leads to a

non-zero value for the oscillator strength at k′
y = 0 (red

solid curve in (a)). The oscillator strength as function of
the external magnetic field is shown in panel (b) for
k′
y = 0.1 . The inset in panel (b) shows the wavefunction

of the states (1) and (3) at B0 ≈ 1.6 T where, the same
relations as for the single kink potential between the
wavespinors ( ϕa1 = −ϕb3 and ϕb1 = ϕa3 ) leads to a zero
value for the oscillator strength.

Conclusions
We obtained the spectrum of electronic bound states that
are localized at potential kinks in bilayer graphene, which
can be created by antisymmetric gate potentials. For a
single potential kink, the bound states are only weakly
influenced by an external magnetic field, due to their
one-dimensional character, caused by the strong confine-
ment along the direction of the potential kink interface.
For a kink-antikink pair, however, the numerical results
show a significant shift of the carrier dispersion, which

(b)(a)

Figure 7 Energy levels of a kink-antikink profile in bilayer graphene as function of external magnetic field B0 for (a) k′
y=0and (b)

k′
y = 0.2. The other parameters are the same as Fig. 5.
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arises due to the coupling of the states localized at either
potential interface. Therefore, such configurable kink
potentials in bilayer graphene permits the tailoring of the
low-dimensional carrier dynamics as well as its magnetic
field response by means of gate voltages.
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