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Efficient spin filter using multi-terminal quantum
dot with spin-orbit interaction
Tomohiro Yokoyama* and Mikio Eto

Abstract

We propose a multi-terminal spin filter using a quantum dot with spin-orbit interaction. First, we formulate the
spin Hall effect (SHE) in a quantum dot connected to three leads. We show that the SHE is significantly enhanced
by the resonant tunneling if the level spacing in the quantum dot is smaller than the level broadening. We stress
that the SHE is tunable by changing the tunnel coupling to the third lead. Next, we perform a numerical
simulation for a multi-terminal spin filter using a quantum dot fabricated on semiconductor heterostructures. The
spin filter shows an efficiency of more than 50% when the conditions for the enhanced SHE are satisfied.
PACS numbers: 72.25.Dc,71.70.Ej,73.63.Kv,85.75.-d

Introduction
The injection and manipulation of electron spins in
semiconductors are important issues for spin-based elec-
tronics, “spintronics.”[1] The spin-orbit (SO) interaction
can be a key ingredient for both of them. The SO inter-
action for conduction electrons in direct-gap semicon-
ductors is written as

HSO =
λ

h̄
σ · [p × ∇U(r)

]
, (1)

where U(r) is an external potential, and s indicates
the electron spin s = s/2. The coupling constant l is
largely enhanced in narrow-gap semiconductors such as
InAs, compared with the value in the vacuum [2].
In two-dimensional electron gas (2DEG; xy plane) in

semiconductor heterostructures, an electric field perpen-
dicular to the 2DEG, U(r) = eEz, induces the Rashba SO
interaction [3,4]

HSO =
α

h̄
(pyσx − pxσy), (2)

where α = eEλ. The Rashba SO interaction can be
tuned by the external electric field, or the gate voltage
[5-7]. In the spin transistor proposed by Datta and Das
[8], electron spins are injected into the 2DEG from a
ferromagnet, and manipulated by tuning the strength of
Rashba SO interaction. However, the spin injection from

a ferromagnetic metal to semiconductors is generally
not efficient, less than 0.1%, because of the conductivity
mismatch [9]. To overcome this difficulty, the SO inter-
action may be useful for the spin injection into semicon-
ductor without ferromagnets. Several spin filters were
proposed utilizing the SO interaction, e.g., three-term-
inal devices based on the spin Hall effect (SHE) [10-12],
a triple-barrier tunnel diode [13], a quantum point con-
tact [14,15], and an open quantum dot [16-19].
The SHE is one of the phenomena utilized to create a

spin current in the presence of SO interaction. There
are two types of SHE. One is an intrinsic SHE which
creates a dissipationless spin current in the perfect crys-
tal [20-22]. The other is an extrinsic SHE caused by the
spin-dependent scattering of electrons by impurities
[23-25]. In our previous articles [26-28], we have formu-
lated the extrinsic SHE in semiconductor heterostruc-
tures with an artificial potential created by antidot,
scanning tunnel microscope (STM) tip, etc. The artificial
potential is electrically tunable and may be attractive as
well as repulsive. We showed that the SHE is signifi-
cantly enhanced by the resonant scattering when the
attractive potential is properly tuned. We proposed a
multi-terminal spin filter including the artificial poten-
tial, which shows an efficiency of more than 50% [27].
In the present article, we investigate an enhancement

of the SHE by the resonant tunneling through a quan-
tum dot (QD) with strong SO interaction, e.g., InAs QD
[29-34]. The QD shows a peak structure of the current
as a function of gate voltage, the so-called Coulomb

* Correspondence: tyokoyam@rk.phys.keio.ac.jp
Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-
ku, Yokohama 223-8522, Japan

Yokoyama and Eto Nanoscale Research Letters 2011, 6:436
http://www.nanoscalereslett.com/content/6/1/436

© 2011 Yokoyama and Eto; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:tyokoyam@rk.phys.keio.ac.jp
http://creativecommons.org/licenses/by/2.0


oscillation. At the current peaks, the resonant tunneling
takes place at low temperatures. First, we consider an
impurity Anderson model with three leads, as shown in
Figure 1a. There are two energy levels in the QD. We
show a remarkable enhancement of the SHE when the
level spacing in the QD is smaller than the level broad-
ening. The SHE is electrically tunable by changing the
tunnel coupling to the third lead.
Next, we perform a numerical simulation for a spin-

filtering device fabricated on semiconductor heterostruc-
tures, in which a QD is connected to three leads (Figure
1b). The device is described using the tight-binding
model of square lattice, which discretizes the two-
dimensional space [35]. We find that the spin filter indi-
cates an efficiency of more than 50% when some condi-
tions are satisfied.

Formulation of spin Hall effect
To formulate the SHE in a multi-terminal QD, we begin
with an impurity Anderson model shown in Figure 1a.
The number of leads is denoted by N (N ≥ 2). As a
minimal model, we consider two energy levels in the
QD; ε1, and ε2. We assume that the wavefunctions, ψ1

and ψ2, in the QD are real in the absence of a magnetic
field. Since the SO interaction (1) includes the

momentum p = -iħ∇, which is a pure imaginary opera-
tor, the diagonal elements of the SO interaction, 〈j|HSO|
j〉 (j = 1, 2), disappear. The off-diagonal elements are
denoted by

〈2|HSO|1〉 = ±i�SO
/
2

for spin ±1/2 in the direction of 〈2|(p × ∇U)|1〉.
The state |j〉 in the QD is connected to lead a by tun-

nel coupling, Va,j (j = 1, 2). The strength of the tunnel
coupling is characterized by the level broadening, Γa =
πνa (Va,1

2 + Va,2
2), where νa is the density of states in

the lead. The leads have a single channel of conduction
electrons. Unpolarized electrons are injected into the
QD from source lead (a = S) and output to drain leads
(Dn; n = 1, 2, ..., N - 1). The electric voltage is identical
in the (N - 1) drain leads. The current to the drain Dn
of each spin component, In,±, is generally formulated in
terms of Green functions in the QD [36].
We formulate the SHE in the vicinity of the Coulomb

peaks where the resonant tunneling takes place.
Neglecting the electron-electron interaction, we obtain
an analytic expression of the conductance Gn,± for spin
±1/2 [37]. We find that the SHE is absent (G1,+ = G1,-)
when the number of leads is N = 2, as pointed out by
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Figure 1 Models of a multi-terminal spin filter using a quantum dot with SO interaction. (a) Impurity Anderson model with three leads.
There are two energy levels (j = 1, 2) in the quantum dot. They are connected to lead by tunnel coupling, Va,j (b) A three-terminal spin-filtering
device fabricated on semiconductor heterostructures. 2DEG is confined in the xy plane. A quantum dot is formed by quantum point contacts on
three leads. Reservoir S is a source from which spin-unpolarized electrons are injected into the quantum dot. The voltage is identical in
reservoirs D1 and D2.
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other groups (see Ref. [18] and related references
cited therein). For N = 3, the conductance to lead D1 is
given by

G1,± =
e2

h
4�S�D1

|D|2
{[
(εF − ε1)eD1,2eS,2 + (εF − ε2)eD1,1eS,1

] 2
+
[
±�SO

2
(eS × eD1)3 + �D2(eD1 × eD2)3(eS × eD2)3

]2
}
.

(3)

Here, D is the determinant of the QD Green function,
which is independent of spin ±1/2 (see Ref. [37] for
detail). We introduce unit vectors, ea(a = S, D1, and

D2), where eα,j = Vα,j/
√
(Vα,1)

2 + (Vα,2)
2, in the pseudo-

spin space representing levels 1 and 2 in the QD. (a ×
b)3 = a1b2 - a2b1.
In Equation 3, the spin current [∝ (Gn,+ - Gn,-)] stems

from the interplay between SO interaction, ΔSO, and
tunnel coupling to lead D2, ΓD2. We exclude specific
situations in which two from eS, eD1, and eD2 are parallel

to each other hereafter. We find the conditions for a
large spin current as follows: (i) The level spacing, Δε =
ε2 - ε1, is smaller than the level broadening by the tun-
nel coupling to leads S and D1, ΓS + ΓD1. (ii) The Fermi
level in the leads is close to the energy levels in the QD
(resonant condition). (iii) The level broadening by the
tunnel coupling to lead D2, ΓD2, is comparable with the
strength of SO interaction ΔSO.
Figure 2 shows the conductance of each spin, G1,+

(solid line) and G1,- (broken line), as a function of εd =
(ε1 +ε2)/2, in the case of N = 3. The conductance shows
a peak reflecting the resonant tunneling around the
Fermi level in the leads, which is set to be zero. We set
ΓS = ΓD1 ≡ Γ, whereas (a) ΓD2 = 0.2Γ, (b) 0.5Γ, (c) Γ,
and (d) 2Γ. The level spacing in the QD is Δε = 0.2Γ.
The strength of SO interaction is ΔSO = 0.2Γ. The cal-
culated results clearly indicate that the SHE is enhanced
by the resonant tunneling around the peak. We obtain a
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Figure 2 Calculated results of the conductance G1,± to the drain 1 for spin ±1/2 in the impurity Anderson model with three leads. In
the abscissa, εd = (ε1 + ε2)/2, where ε1 and ε2 are the energy levels in the quantum dot. Solid and broken lines indicate G1,+ and G1,-,
respectively. The level broadening by the tunnel coupling to the source and drain 1 is ΓS = ΓD1 ≡ Γ (VS,1/VS,2 = 1/2, VD1,1/VD1,2 = -3), whereas
that to drain 2 is (a) ΓD2 = 0.2Γ, (b) 0.5Γ, (c) Γ, and (d) 2Γ (VD2,1/VD2,2 = 1). Δε = ε2 - ε1 = 0.2Γ. The strength of SO interaction is ΔSO = 0.2Γ.
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large spin current when ΓD2 ~ ΔSO, as pointed out pre-
viously. Therefore, the SHE is tunable by changing the
tunnel coupling to the third lead, ΓD2.

Numerical simulation
To confirm the enhancement of SHE discussed using a
simple model, we perform a numerical simulation for a
spin-filtering device in which a QD is connected to
three leads, as shown in Figure 1b. 2DEG in the xy
plane is formed in a semiconductor heterostructure.
Reservoir S is a source from which spin-unpolarized
electrons are injected into the QD. The voltage is identi-
cal in reservoirs D1 and D2.

Model
A QD is connected to reservoirs through quantum wires
of width W. A hard-wall potential is assumed at the
edges of the quantum wires. The QD is formed by
quantum point contacts on the wires. The potential in a
quantum wire along the x direction is given by [38]

U(x, y,U0) =
{
U0

2

[
1 + cos

(
2πx
L

)]

+EF
∑
±

(
y − y±(x)

�

)2

θ(y2 − y±(x)2)

}

× θ(x + L)θ(L − x),

(4)

with

y±(x) = ±W
4

[
1 − cos

(
2πx
L

)]
. (5)

where θ(t) is a step function [θ = 1 for t > 0, and θ =
0 for t < 0], U0 is the potential height of the saddle
point. The parameter Δ characterizes the confinement
in the y direction, whereas L is the thickness of the
potential barrier. When the electrostatic energy in the
QD is changed by the gate voltage Vg, the potential is
modified to U(x, y, U0 - eVg)+eVg inside the QD region
[netted square region in Figure 1b] and U(x, y, U0) out-
side of the QD region (The potential in the three quan-
tum wires is overlapped by each other inside the QD
region. Thus, we cut off the potential at the diagonal
lines in the netted square region in Figure 1b).
The gradient of U gives rise to the SO interaction in

Equation 1, as

HSO =
λ

h̄
σz

[
px

∂U
∂y

− py
∂U
∂x

]
. (6)

Although the SO interaction is also created by the
hard-wall potential at the edges of the leads, it is negligi-
ble because of a small amplitude of the wavefunction
there [27].

The device is described using the tight-binding model
of square lattice, which discretizes the real space in two
dimensions [35,38]. The width of the leads is W = 30a,
with lattice constant a. The effective mass equation
including the SO interaction in Equation 6 is solved
numerically. The Hamiltonian is

H =t
∑
i,j,σ

Ũi,jc
†
i,j;σ ci,j;σ − t

∑
i,j,σ

(
Ti,j;i+1,j;σ c

†
i,j;σ ci+1,j;σ

+Ti,j;i,j+1;σ c
†
i,j,σ ci,j+1,σ + h. c.

)
,

(7)

where c†i,j;σ and ci,j;s are creation and annihilation

operators of an electron, respectively, at site (i, j) with
spin s. t = ħ2/(2m* a2), and m* is the effective mass of
electrons. Ũi,j is the potential energy at site (i, j), in
units of t. The transfer term in the x direction is given
by

Ti,j;i+1,j;± = 1 ± iλ̃(Ũi+1/2,j+1 − Ũi+1/2,j−1), (8)

whereas that in the y direction by

Ti,j;i,j+1;± = 1 ∓ iλ̃(Ũi+1,j+1/2 − Ũi−1,j+1/2), (9)

with λ̃ = λ/(4a2). Ũi+1/2,j is the potential energy at the
middle point between the sites (i, j) and (i + 1, j), and
Ũi,j+1/2 is that of (i, j) and (i, j + 1).
We introduce a random potential wi,j in the QD

region. -Wran/2 ≤ wi,j ≤ Wran/2. The randomness Wran is
related to the mean free path Λ by the following equa-
tion [38]:

Wran

EF
=

(
6λ3

F

π3a2�

)1/2

. (10)

We disregard the SO interaction induced by the ran-
dom potential.
We assume that the Fermi wavelength is lF = W/3 =

10a. The strength of SO interaction is λ̃ = 0.1, which
corresponds to the value for InAs, l = 117.1 Å2 [2],
with the width of the leads W = 30a ≈ 50 nm. The
Fermi energy is given by EF/t = 2 - 2 cos(kFa), with kF
= 2π/lF. The thickness of tunnel barriers is L/lF = 2.
The randomness is Wran/EF = 1, which means that
the mean free path is Λ/lF ≈ 19.4. The temperature is
T = 0.

Calculated results
Since the z component of spin is conserved with the SO
interaction (6), we can evaluate the conductance for sz =
±1/2 separately. Using the Green’s function and Landauer-
Büttiker formula, we calculate the conductance Gβα

± from
reservoir a to reservoir b, for spin sz = ±1/2 [35,38,39].
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Figure 3 Results of the numerical simulation for the spin-filtering device shown in Fig. 1(b). The conductance G± for spin sz = ±1/2 from
reservoir S to D1 is shown as a function of gate voltage Vg on the quantum dot. Solid and broken lines indicate G+ and G-, respectively. The
height of the tunnel barriers is US = UD1 = UD2 = 0.9EF.
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Figure 4 Results of the numerical simulation for the spin-filtering device shown in Fig. 1b. The spin polarization Pz of the output current
in reservoir D1 is shown as a function of gate voltage Vg on the quantum dot. The height of the tunnel barriers is US = UD1 = 0.9EF, whereas (a)
UD2/EF = 0.9, (b) 0.8, (c) 0.7, and (d) 0.6.
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The total conductance is Gβα = Gβα
+ + Gβα

− , whereas the
spin polarization in the z direction is given by

Pzβα =
Gβα
+ − Gβα

−
Gβα
+ + Gβα

−
. (11)

We focus on the transport from reservoir S to D1 and
omit the superscripts (b = D1, a = S) of Gβα

± and Pz
ba.

Figure 3 presents the conductance G± for spin sz =
±1/2 as a function of the gate voltage Vg on the QD.
We choose US = UD1 = UD2 = 0.9EF for the tunnel bar-
riers. The conductance G+ (solid line) and G- (broken
line) reflect the resonant tunneling through discrete
energy levels formed in the QD region. Around some
conductance peaks, e.g., at eVg/EF ≈ 0.13 and -0.03, the
difference between G+ and G- is remarkably enhanced.
Thus, a large spin current is observed, which implies
that two energy levels are close to each other around
the Fermi level there.
The spin polarization Pz is shown in Figure 4a for the

range of 0.35 >eVg/EF > -0.25. Around the conductance
peaks, a large spin polarization is observed. The effi-
ciency of the spin filter becomes 37% at eVg/EF ≈ 0.13
and 42% at eVg/EF ≈ -0.03.
Next, we examine the tuning of the spin filter by

changing the tunnel coupling to lead D2. In Figure 4,
we set (b) UD2/EF = 0.8, (c) 0.7, and (d) 0.6 while both
US and UD1 are fixed at 0.9EF. As UD2 is decreased, the
tunnel coupling becomes stronger. First, the spin polari-
zation increases with an increase in the tunnel coupling.
It is as large as 63% in the case of Figure 4b. With an
increase in the tunnel coupling further, the spin polari-
zation decreases (Figure 4c,d).

Conclusions
We have formulated the SHE in a multi-terminal QD.
The SHE is enhanced by the resonant tunneling through
the QD when the level spacing is smaller than the level
broadening. We have shown that the SHE is tunable by
changing the tunnel coupling to the third lead. Next,
the numerical simulation has been performed for a
spin-filtering device using a multiterminal QD fabricated
on semiconductor heterostructures. The efficiency of
the spin filter can be larger than 50%.

Abbreviations
QD: quantum dot; STM: scanning tunnel microscope; SHE: spin Hall effect;
SO: spin-orbit.
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