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Abstract

We have investigated the structure of non-polar GaN, both on the M - and A-plane, grown on LiGaO2 by plasma-
assisted molecular beam epitaxy. The epitaxial relationship and the microstructure of the GaN films are investigated
by transmission electron microscopy (TEM). The already reported epi-taxial relationship [112̄0]GaN||[010]LGO and
(11̄00)GaN||(100)LGO for M -plane GaN is confirmed. The main defects are threading dislocations and stacking faults
in both samples. For the M -plane sample, the density of threading dislocations is around 1 × 1011 cm-2 and the
stacking fault density amounts to approximately 2 × 105 cm-1. In the A-plane sample, a threading dislocation
density in the same order was found, while the stacking fault density is much lower than in the M -plane sample.

Introduction
Gallium nitride (GaN), as one of the most important
wide band semiconductors today, has far-reaching
applicability in electronic and optoelectronic devices. Its
hexagonal crystal structure, however, exhibits a polar
axis in the [0001] direction along which a polarization is
present. The resulting polarization fields lead to intrinsi-
cally existent internal electric fields which give rise to a
strong quantum-confined Stark effect when group III-
nitride heterostructures are grown along the [0001]
direction. As a consequence, electrons and holes are
spatially separated in such structures, leading to a
reduced wave function overlap and a decreased radiative
transition energy.
One way to circumvent these unwanted effects is to

use non-polar surfaces of the hexagonal nitride structure
such as the M -plane {11̄00} and A-plane {112̄0} for epi-
taxial growth procedures. The lack of available sub-
strates for homoepitaxy on non-polar crystal planes
requires alternative substrates for heteroepitaxy. While
various substrates have been considered for this pur-
pose, LiGaO2 (LGO) presents the unique opportunity
for growth of C -, M -, and A-plane-oriented GaNs on a
very well lattice-matched substrate, depending on the
substrate surface orientation used. C -plane GaN growth

has been demonstrated on (001) LGO by a number of
groups, e.g. [1]. Recently, M - and A-plane GaN growth
has been reported on (100) LGO [2] and (010) LGO [3],
respectively.
In this article, we demonstrate a first analysis of M -

and A-plane GaN films on LGO showing strong evi-
dence for a high-phase purity of non-polar GaN. The
TEM studies confirm the epitaxial relationship of M
-plane GaN on (100) LGO and A-plane GaN on (010)
LGO and give insight to their defect structure.

Experimental procedure
The two samples discussed in this report were grown by
plasma-assisted molecular beam epitaxy (PAMBE).
Details on the growth of the films as well as a first
structural analysis including an investigation by X-ray
diffraction can be found in our previous reports in [2,3].
The M -plane GaN sample was grown on (100) LGO,
and the A-plane GaN sample was grown on (010) LGO.
A plan view TEM sample of the M -plane GaN film was
prepared by mechanical polishing and subsequent Ar-
ion milling. Two cross-sectional
TEM samples were fabricated for each of the GaN

samples. The M -plane samples were cut by a focused
ion beam (FIB), one looking onto the C -plane and
one onto the A-plane. Mechanical polishing and Ar-
ion milling were used in the preparation of the A-
plane GaN TEM sample with the C -plane as the sam-
ple surface, while FIB cutting was used to produce the
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A-plane GaN TEM sample with the M -plane as the
TEM sample surface. The samples were analyzed using
a JEOL 3010 TEM as well as a FEI Tecnai F20 TEM,
each operated with an electron acceleration voltage of
200 kV.

Results and conclusion
The epitaxial relationship of the M -plane GaN sample
can be deduced from Figure 1a and 1b, where the dif-
fraction patterns taken from the GaN film and the LGO
substrate, seen in Figure 1c, are depicted. From the pat-
terns, it is clear that [112̄0]GaN||[010]LGO, and
(11̄00)GaN||(100)LGO. In Figure 1c, showing a bright
field image of the sample cut parallel to the C -plane, a
high density of threading dislocations is apparent. The
bright areas in the substrate located directly at the

interface of the substrate and the epi layer represent
holes in the TEM sample caused by the electron irradia-
tion of the transmission electron microscope. Since
LGO is very sensitive to electron bombardment, it is
very difficult to obtain good quality high-resolution
images of this material. This issue is also discussed
regarding reflection high-energy electron diffraction
measurements in the growth procedure [2].
Taking a look at the M -plane GaN sample cut paral-

lel to the A-plane in Figure 2a, a high density of partial
dislocations associated with a high density of stacking
faults can be seen. Figure 2b displays the electron dif-
fraction pattern of the GaN film seen in Figure 2a. The
diffraction spots show streaks along the [0001] direction,
giving strong evidence toward a high density of stacking
faults in the film.

Figure 1 TEM data of the M -plane sample, with viewing direction [0001]. Parts (a) and (b) display the electron diffraction patterns of the
GaN film and the LGO substrate seen in the bright field image of the M -plane GaN film (c), respectively.
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The plan view TEM sample of the M -plane GaN film
allows for an estimate of the density of threading dislo-
cations and stacking faults. A centered dark field image
of one region of the plan view sample is seen in Figure
3. The numerous small dots represent threading disloca-
tions, while stacking faults are found running perpendi-
cular to the [0001] direction as indicated, i.e., they lie in
the C -plane. The elongated spots in the diffraction pat-
tern inset in Figure 3 point toward the presence of
twisted mosaic blocks in the film. The twist angle can
be as high as 5°. In this sample, the threading disloca-
tion density was found to be on the order of 1 × 1011

cm-2 and the stacking fault density around 2 × 105 cm-1.
The dislocation density is higher in this sample than
values reported in the literature ~ 109 cm-2 [4] for M
-plane GaN, e.g. grown on LiAlO2 by MOVPE. How-
ever, growth parameters had not been fully optimized
on LGO and the film thickness here is twice as thin as
in [4]. The thickness of the film is believed to have

some impact on the threading dislocation density as is
mentioned in [5] where the values for M -plane GaN
grown on LiAlO2 are given as 109 cm-2 near the sub-
strate and 108 cm-2 near the surface. The stacking fault
density in our sample is roughly on the same order as
reported elsewhere; however, values as low as 104 cm-1

[4] have been reported.
The A-plane GaN sample cut perpendicular to the

[0001] direction, shown in Figure 4, displays a high den-
sity of threading dislocations. Comparing in-zone bright
field images (not shown here) of the M - and A-plane
films, the dislocation density of the two films is on the
same order of magnitude, i.e., around 1 × 1011 cm-2.
The images in Figure 4a and 4b are bright field images
taken in the two beam condition with the �g vector par-
allel to the [112̄0] and the [11̄00] direction, respectively.
The inset in Figure 4a displays the diffraction pattern of
the GaN layer showing the growth of A-plane GaN. Dis-
locations that have a burgers vector parallel to [112̄0]
can be observed in Figure 4a; these are mixed and edge
threading dislocations. In Figure 4b both pure screw
and edge dislocations are out of contrast since they have
burgers vectors parallel to [0001] and [112̄0], respec-
tively [6], and can there-fore not be seen. Owing to the
much lower density of visible dislocations in Figure 4b ,
we can state that most dislocations are of either edge or
screw type and a minority belongs to the mixed type. In
Figure 4 inversion domain boundaries appear in both
pictures as straight lines as indicated. These have an
inclination of 60° with respect to the interface, i.e. they
lie on the other two {112̄0} planes of GaN.
Figure 5b and 5c shows bright field images of the A-

plane GaN sample cut perpendicular to the [11̄00]
direction taken in the two beam condition with �g =
(0002) and �g = (112̄0), respectively. Damage to the sub-
strate by the electron beam is again seen. Threading

Figure 2 TEM data of the M -plane sample, with viewing
direction [112̄0]. GaN diffraction pattern (a) and the
corresponding bright field M -plane GaN film image (b).

Figure 3 Inplane TEM sample of the M -plane GaN sample. The
inset shows the GaN diffraction pattern.
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dislocations as well as stacking faults are visible. Slightly
more dislocations appear in the image with �g = (0002)
indicating that there are more pure screw threading dis-
locations than edge dislocations. In comparison to the
M -plane GaN sample, much fewer stacking faults are
present in the A-plane film. This observation is also
confirmed by the missing streaks in the diffraction pat-
tern, shown in Figure 5a. This means that the stacking
fault density is lower than ~105 cm-1, and therefore
lower than values reported previously, e.g. for A-plane
GaN on R-plane Sapphire, 3.83 × 105 cm-1 [7].

Summary
M - and A-plane GaN films grown on (100) and (010)
LGO, respectively, were analyzed by transmission elec-
tron microscopy. We show that the epitaxial relationship
of the film deduced is in agreement with previous

Figure 4 Bright field images of the A-plane GaN sample taken
in the two beam condition with the �g = (112̄0) (a) and
�g = (11̄00) (b). The viewing direction for these images is [0001].

Figure 5 TEM data of the A-plane sample, with viewing
direction [1̄100]. (a) Diffraction pattern of the GaN film of the A-
plane GaN sample. (b) and (c) show bright field images of the same
sample taken in the two beam conditions with �g = (0002) and
�g = (112̄0), respectively.
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reports. Threading dislocations and stacking faults are
the main defects in the films. For the case of the M
-plane GaN sample, a threading dislocation density of 1
× 1011 cm-2 and stacking fault density of about 2 × 105

cm-1 were found. The A-plane sample shows a threading
dislocation density on the same order; however, a much
lower stacking fault density is found in comparison to
the M -plane sample.
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