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Advances in modelling of biomimetic fluid flow
at different scales
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Abstract

The biomimetic flow at different scales has been discussed at length. The need of looking into the biological
surfaces and morphologies and both geometrical and physical similarities to imitate the technological products
and processes has been emphasized. The complex fluid flow and heat transfer problems, the fluid-interface and
the physics involved at multiscale and macro-, meso-, micro- and nano-scales have been discussed. The flow and
heat transfer simulation is done by various CFD solvers including Navier-Stokes and energy equations, lattice
Boltzmann method and molecular dynamics method. Combined continuum-molecular dynamics method is also
reviewed.

Introduction
Human knowledge is getting enriched from the four
billion years’ worth of R & D in the natural world of plants
and animals and other lower level living creatures and
microorganisms, which have evolved through the ages to
nicely adapt to the environment. Man has now drawn his
attention to soil creatures like earthworms, dung beetle,
sea animals like shark and plants and trees like lotus leaf
and pastes like termites. In the nature, we see examples of
effortless and efficient non-sticking movement in mud or
moist soil, high-speed swimming aided by built-in drag-
reduction mechanism, water repellant contaminant-free
surface cleaning mechanism and natural ventilation and
air conditioning, [1-8]. By nature, feather of the penguin
shows staying warm naturally, Figure 1 [4]. The leaf of the
lotus is hydrophobic to the extent that water running
across the surface of the leaf retains particles of dirt caused
by a thick layer of wax on the surface and the sculpture of
that surface, Figure 2 [9-11]. This forces the droplets of
water to remain more or less spherical when in contact
with the leaf, and reduces the tendency of other contami-
nants to stick to the leaf. It has been proved that water
repellency causes an almost complete surface purification
(self-cleaning effect): contaminating particles are picked
up by water droplets or they adhere to the surface of the
droplets and are then removed with the droplets as they

roll off the leaves. This characteristic has been utilized in
exterior-quality paint, ‘Lotusan’, which makes surfaces
self-cleaning. Hooks occur in nature as a vast array of
designs and in a diversity of animals and plants. The com-
mercial application of this technology of ‘Nature’ can be
found in Velcro [5] having the cheapest and most reliable
bur hook-substrate combination. There are now thou-
sands of patents quoting Velcro. This is how the subject of
biomimetics has developed. Biomimetics is the application
and abstraction of biological methods, systems and good
designs found in nature to the study and design of efficient
and sustainable engineering systems and modern technol-
ogy. The transfer of technology between lifeforms and
manufactures is desirable because evolutionary pressure
typically forces living organisms, including fauna and flora,
to become highly optimized and efficient. Generally there
are three areas in biology after which technological solu-
tions can be modelled.

• Replicating natural manufacturing methods as in
the production of chemical compounds by plants
and animals.
• Mimicking mechanisms found in nature such as
Velcro and Gecko tape.
• Imitating organizational principles from social
behaviour of organisms like ants, bees and
microorganisms.

Russia has developed a systematic means for integrat-
ing the natural knowledge into humankind’s technology
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using ‘Teoriya Resheniya Izobretatelskikh Zadatch
(TRIZ)’, i.e. the theory of inventive problem solving,
which provides an objective framework based on func-
tionality for accessing solutions from other technologies
and sciences. TRIZ also prevents waste of time trying to
find a solution where none exists. The four main tools
of TRIZ are a knowledge database arranged by function,
analysis of the technical barriers to progress (contradic-
tions), the way technology develops (ideality) and the
maximization of resource usage. The biology-based
technology ‘Biomimetics’ suggests new approaches
resulting in patents and some into production:

• Strain gauging based on receptors in insects [7],

• Deployable structures based on flowers and leaves
[12],
• Tough ceramics based on mother-of-pearl [13],
• Drag reduction based on dermal riblets on shark
skin [14],
• Tough composites based on fibre orientations in
wood [15],
• Underwater glues based on mussel adhesive [16],
• Flight mechanisms based on insect flight [2],
• Extrusion technology based on the spinneret of the
spider [3],
• Self-cleaning surfaces based on the surface of the
lotus leaf [17].

The importance of Biomimetics will increase as the
incidence of genetic manipulation increases and the
genetic manufacturing is developed. In the result, the
area between living and non-living materials, where biol-
ogy interacts with engineering, e.g. bioengineering and
biomechatronics, is benefited.
There are innumerable examples of interactions with

the environment and balanced and efficient heat, mass,
momentum and species transfer through the microstruc-
tures in the fluid flow in the manifested living world of
plants, animals and other living creatures. Biomimetics
involve mimicking these interactions across the func-
tional surfaces with the surrounding environments in the
technological design. The physical nature is numerically
modelled and simulated using computational fluid
dynamics (CFD).
Geometrical analogy as well as physical similarity is to

be studied to design technological functional surfaces
imitating microstructural and biological functional sur-
face morphologies. CFD at micro- or meso-scales and
other numerical methodologies are necessary for this
[18-24].
The meso- and micro-scale methods are also being

developed in parallel with the continuum theory-based
conventional CFD techniques-using finite volume
method (FVM) and finite element method (FEM). In the
mesoscopic lattice Boltzmann method (LBM), fluid flow
is simulated by tracking the development of distribution
functions of assemblies of molecules. It is difficult to
capture the interfacial dynamics, which is essential for
multiphase flow, at the macroscopic level. LBM captures
the interaction of fluid particles and is, therefore, helpful
for multiphase flow with phase segregation and surface
tension. Also, the LBM is computationally more efficient
than molecular dynamics (MD) method since it does not
track individual molecules; the solution algorithm is
explicit, easy to implement and parallel computation
can be done. Micro/nano-scale simulations in micro/
nano-scale geometries and micro time scales are done in
MD method and direct simulation of Monte Carlo

Figure 1 Feather of a penguin to stay warm naturally in a cold
climate. (From [4]).

Figure 2 The epidermal structure at the heart of the lotus
effect. (From [11]).
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(DSMD) method. Coupled macro-scale simulation is
being done using high performance computer (HPC).
This article makes a review of the advances in multiscale
biomimetic fluid flow modelling and simulation of diffi-
cult physics problems with complex biological interfaces.

Macroscopic biomimetic flow modelling
The locomotion, power and manoeuvring of aquatic ani-
mals like swimming fish having superior and efficient uti-
lization of propulsion through a rhythmic unsteady
motion of the body and fin resulting in unsteady flow
control has been engineered for the transportation in the
underwater vehicles. The fish senses and manipulates
large-scale vortices and repositions the vortices through
tail motion. The timing of formation and shedding of
vortices are important. CFD application by mimicking
the swimming of fish and underwater dolphin kicking
has been utilized to understand active drag and propul-
sive net thrust and this has resulted in better sailing
performance, Olympic ski jumping, Formula 1 racing,
Speedo’s new Fastskin FSII swimsuit and an optimal kick
profile in swim starts and turns. The undulatory propul-
sion in aquatic vertebrates is achieved by sending alter-
nating waves down the body towards the tip of the tail
and causing sinusoidal oscillation of the body, a jet in the
wake and a forward thrust. Two modes of propulsive
technique utilized by fish are anguilliform and carangi-
form, Figure 3 [25]. The carangiform mode is also termed
as ‘lunate-tail swimming propulsion’.
The unsteady incompressible Navier-Stokes equations of

turbulent flow are solved in the simulation by applying the
Reynolds-averaged Navier-Stokes (RANS) equations with
usual boundary conditions to obtain the fluctuating velo-
city fields. The equations in Cartesian tensor form are:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (1)

∂

∂t
(ρui) +

∂

∂xi

(
ρuiuj

)
= − ∂p

∂xi
+

∂

∂xj

[
μ

(
∂ui
∂xj

+
∂uj
∂xi

− 2
3

δij
∂ul
∂xl

)]
+

∂

∂xj

(−ρu′
iu′

j
)

(2)

−ρu′
iu′

j = μt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

(
ρk + μt

∂ui
∂xi

)
δij (3)

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
μ +

μt

σk

)
∂k
∂xj

]
+ Gk − ρε (4)

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xi

[(
μ +

μt

σε

)
∂ε

∂xj

]
+ C1ε

ε

k
Gk − C2ερ

ε2

k
(5)

Gk = −ρu′
iu′

j
∂uj
∂xi

∞ (6)

μt = ρCμ

k2

ε
(7)

where x and u are Cartesian coordinates and veloci-
ties, respectively, and t is time. Velocity u, density r,
viscosity μ and other solution variables represent
ensemble-averaged (or time-averaged) values. Reynolds
stress, −ρu′

iu′
j is modelled and related to the mean

velocity gradients by Boussinesq hypothesis. k is the
turbulence kinetic energy, ε the kinetic energy dissipa-
tion rate and μt the turbulent viscosity. C is constant,
s the Prandtl number. Gk represents the generation of
turbulence kinetic energy due to the mean velocity
gradients. μt is the turbulent viscosity.
The turbulent flow induced by the fish-tail oscillation

is characterized by fluctuating velocity fields. The
instantaneous governing equations are time averaged to
reduce the computational time and complexity which is
done in the form of turbulence models like the semi-
empirical k-ε work-horse turbulence model for practical
engineering flow calculations.
To calculate the flow field using the dynamic mesh,

the integral form of the conservation equation for a

Figure 3 The modes of swimming of fishes. (a) The anguilliform motion of an eel. (b) The carangiform motion of a tuna. (From [25]).
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general scalar � on an arbitrary control volume V with
moving boundary is employed:

d
dt

∫
V

ρϕdV +
∫
∂V

ρϕ
(�u − �ug

) · d�A =
∫
∂V

�∇ϕ · d�A +
∫
V

SϕdV (8)

where �u is the flow velocity vector, �ug is the grid velo-
city of the moving mesh, Γ is the diffusion coefficient,
S� is the source term of � and ∂V is the boundary of
the control volume V.
The flow is characterized by spatially travelling waves

of body bound vorticity. The mix between longitudinal
and transverse flow features varies with the phase of
oscillation and the unsteady velocity field varies
throughout an oscillation cycle. The dynamic pressure
distribution contour and the effect of the tail movement
on the unsteady flow field of the fish-like body will
show that there are high pressure zones at the rear of
the body indicating strong vortex and turbulence. The
kinematic parameters like Strouhal number, wavelength

and oscillating frequency are based on the forward loco-
motion in a straight line with constant speed in the
cruising direction. Figure 4 shows the computational
geometric forms of (a) the Robo Tuna, (b) tuna with
dorsal/ventral finlets and (c) giant danio [26]. Fish
swimming kinematic data shows that the non-dimen-
sional frequencies are close to the value predicted by
the instability analysis. Figure 5, from Rohr et al. [27],
shows Strouhal number as a function of the Reynolds
number for numerous observations of trained dolphins
with good agreement between theory and experiment.
Other example of using CFD to study biomimetic fluid

flow problems include simulation of air flow around
flapping insect wings, numerical simulation of electro-
osmotic flow near earthworm surface and simulation of
explosive discharge of the bombardier beetle.
Kroger [28] made a CFD simulation study of air flow

around flapping insect wings. The interest in the flap-
ping-wing technique [29,30] is growing recently due to
the fact, that the developments in micro-technology

Figure 4 Computational geometric forms of (a) the Robo Tuna, (b) tuna with dorsal/ventral finlets and (c) giant danio. (From [26]).
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permit people to think about building very small and
highly manoeuvrable micro-aircraft that could be used
for search and rescue missions or to detect harmful sub-
stances or pollutants in areas that are not accessible by
or too dangerous for humans. There are three basic
principles that contribute to unsteady flapping-wing
aerodynamics: delayed stall, rotational circulation and
wake capture. However, the exact interactions between
them are still subject to ongoing research by CFD simu-
lation. Figure 6 shows surface mesh on fly body.
The dynamic mesh CFD model is used to examine

critical flight simulations of normal aircraft, like the
undercarriage lowering at low air speed, or the move-
ment of sweep wings of fighter jets at high air speed.
Next to flight applications, the dynamic mesh model
can also simulate moving heart valves in the biomedical
area, or small flapping membrane valves in micro-
fluidics or the flow around any arbitrary moving part in
other industry or sports applications.

The electro-osmotic flow controlled by the Navier-
Stokes equations near an earthworm surface has been
simulated by Zu and Yan [31] numerically to understand
the anti soil adhesion mechanism of earthworm. A lattice
Poisson method (LPM), which is a derived form of LBM,
has been employed to solve externally applied electric
potential � and charge distributions in the electric double
layer along the earthworm surface. The external electric
field is obtained by solving a Laplace equation. The simu-
lation [32-35] showed that moving vortices, contributing
to the anti soil adhesion, are formed near earthworm
body surface by the non-uniform and variational electric
force acting as lubricant. Figure 7 shows the electro-
osmotic flow field between the surfaces of soil and
earthworm.
A biomimetic CFD study [36-39] of the bombardier

beetle’s explosive discharge apparatus and unique nat-
ural ‘combustion’ technique in its jet-based defence
mechanism helps designing a short mass ejection system
and a long range of spray ejection pertinent to reigniting
a gas turbine aircraft engine which has cut out, when
the cold outside air temperature is extremely low. The
beetle can eject a hot discharge to around 200 to 300
times the length of its combustor. Figure 8 shows a
bombardier beetle (brachina) ejecting its water-steam jet
at 100°C forward from the tip of its abdomen (from left
to right).

Hybrid molecular-continuum fluid dynamics simulation
Nanoscale systems such as GaAsMESFETs and SiMOS-
FETs semiconductor devices, ultra-fast (picoseconds or
femtoseconds) pulsed lasers do not conform to the clas-
sical Fourier heat diffusion theory in which the mean
free path of the energy carriers becomes comparable to
or larger than the characteristic length scale of the parti-
cle device/system or the time scale of the processes
becomes comparable to or smaller than the relaxation

Figure 5 Strouhal number for swimming dolphins as a
function of Reynolds number. (From Rohr et al. [27]).

Figure 6 Surface mesh on fly body. (From [28]).
Figure 7 Electroosmotic flow field between the surfaces of soil
and earthworm. (From [31]).
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time of the energy carriers. Although numerical techni-
ques like Boltzmann transport equation (BTE) or
atomic-level simulation (MD) and Monte Carlo simula-
tion (MCS) can capture the physics in this regime, they
require large computational resources. The C-V hyper-
bolic equation, which is not subject to the Fourier law
assumption of infinite thermal propagation speed, is also
not free from anomalies.
Limitations of continuum description of a system
Finite difference and finite element methods serve well
for continuum description of a system governed by a set
of differential equations and boundary conditions. How-
ever, the problem arises when the system has atomic
fabric of matter such as in the case of friction problems
and phase-change problems of fluid freezing into a solid
or dynamic transition such as intermittent stick-slip
motion [40].
The molecular dynamics (MD) method
When a system is modelled on the atomic level such as
in case of MD, the motion of individual atoms or mole-
cules is approximated. The particle motion is controlled
by interaction potentials and equations of motion. MD
is used for systems on the nanometre scale.
Coupling MD-continuum
Coupling two very different descriptions of fluids at
MD-continuum interface is a serious issue. The overlap-
ping region of two descriptions must be coupled over
space as well as time giving consistent physical quanti-
ties like density, momentum and energy and their fluxes
must be continuous. Quantities of particles may be aver-
aged locally and temporally to obtain boundary condi-
tions of continuum equations. Getting microscopic
quantities from macroscopic non-unique ensembles is,
however, difficult.

Coupling schemes
Several coupling schemes [40-44] have been developed
and the two solutions relax in a finite overlap region
before they are coupled. Equations of motion are the
language of particles and these are coupled with the
continuum language, i.e. the differential equations. The
coupling mechanism transmits mass flux, momentum
flux and energy flux across the domain boundary. If the
remaining boundaries are sealed, i.e. the simulated sys-
tem is closed; the coupling ensures conservation of
mass, momentum and energy.
The two domains are coupled to each other by ensur-

ing that the flux components normal to the domain
boundary match. If particles flow towards the boundary,
a corresponding amount of mass, momentum and
energy must be fed into the continuum. Conversely, any
transport in the vicinity of the boundary on the part of
the continuum must provide a boundary condition for
transport on the part of the particles.
Figure 9 shows the velocity and temperature profiles

observed in a simulation using Lennard-Jones particles
and a Navier-Stokes continuum.
Smoothed particle hydrodynamics
Sousa [45] presented a scientific smoothed particle
hydrodynamic (SPH) multiphysics simulation tool
applicable from macro to nanoscale heat transfer. SPH
[45] is a meshless particle based Lagrangian fluid
dynamic simulation technique; the fluid flow is repre-
sented by a collection of discrete elements or pseudo
particles. These particles are initially distributed with a
specified density distribution and evolve in time accord-
ing to the fluid heat, mass, species and momentum con-
servation equations. Flow properties are determined by
an interpolation or smoothing of the nearby particle

Figure 8 A bombardier beetle ejecting its water-steam jet.
(From [36]).

Figure 9 Plot of velocity parallel to a macroscopically flat wall
and of temperature as a function of wall distance. Spheres and
squares represent the particle and the continuum domain,
respectively. (From [40]).
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distribution with the help of a weighting function called
the smoothing kernel. SPH is advantageous in (1) track-
ing problems dealing with multiphysics, (2) handling
complex free surface and material interface, (3) parallel
computing with relatively simple computer codes,
(4) dealing with transient fluid and heat transport.
Following the original approach of Olfe [46] and Mod-

est [47] in case of radiative heat transfer, Sousa [45]
made the SPH numerical modelling for the ballistic-dif-
fusive heat conduction equation. In this method, the
heat carriers inside the medium are split into two com-
ponents: ballistic and diffusive. The ballistic component
is determined from the prescribed boundary condition
and/or nanoscale heat sources and it experiences only
outscattering; the transport of the scattered and excited
heat carriers inside the medium is treated as diffusive
component.
Intrinsic complex issues in hybrid method
The development and optimization of the performance
of micro and nano fluidic devices requires numerical
modelling of fluid flow inside micro and nanochannels.
The nature of the phenomena involved in these devices
invariably and predominantly has the interfacial interac-
tions because of high surface-to-volume ratio and is
characterized by an inherent multiscale nature [48-62].
The traditional continuum models do not capture the
flow physics inside the micro and nano scale systems
because they neglect the microscopic mechanisms at
these scales. The MD is a microscopic model and this
can be used where macroscopic constitutive equations
and boundary conditions are inadequate. Figure 10 [48]
shows the schematic representation of a molecular
region in a hybrid simulation. The MD are well suited

for the study of slip generation in the solid-fluid interface
and other surface properties like nanoroughness and
wettability and the boundary conditions. However, high
computational cost restricts the molecular simulations
to their applications to nanoscale systems and time scales
below microseconds. This disparity of spatial and
temporal scales is overcome in the hybrid atomistic-
continuum multiscale frameworks where the molecular
description models only a small part of the computa-
tional domain, since the physics of this part of the system
cannot be represented by the continuum model. The
boundary condition is transferred accurately and effi-
ciently between the atomistic and continuum description
in the hybrid methods. Since the microscopic description
requires more degrees of freedom than the macroscopic
one, the transfer of macroscopic information on a mole-
cular simulation becomes all the more a challenging task.
MD model and the Maxwell-Boltzmann velocity distribution
The MD atomistic model in the micro-scale framework
is a deterministic method. In this model, the evolution
of the molecular system is obtained by computing the
trajectories of the particles based on the classical mole-
cular model. The continuum conditions can be applied
to molecular domain either by the method based
on continuous rescaling of atomic velocities or by the
periodic resampling method of atomistic velocities
that employs velocity distribution functions such as
Maxwell-Boltzmann or Chapman-Enskog distribution
for non-equilibrium situations of hybrid simulations in
dilute gases employing geometrical decomposition and
state coupling. The Maxwell-Boltzmann velocity distri-
bution is the natural velocity distribution of an atomic
or molecular system in an equilibrium state defining the
probability of one-dimensional velocity components of
an atom assuming a specific value based on temperature
and the atomic mass. The reflective plane placed at the
upper boundary of the boundary condition transfer
region maintains every particle inside the molecular
domain. This scheme is simpler than the velocity rever-
sing scheme, but this can be applied only to incompres-
sible flows because the normal pressure is a result of the
reflected atoms.
Rescaling techniques
In the rescaling techniques, in addition to the velocity
restrictions, the continuum pressure applies to the ato-
mistic region. The normal pressure is applied through
external forces generating a potential energy field. Energy
is decreased because of the reduction of potential energy
of the atoms moving towards the continuum boundary.
The resulting energy oscillations in the molecular system
are reduced by velocity reversing of the outermost atoms.
This scheme is simple and robust because of uncon-
trolled transfer of energy. The continuum temperature to
the molecular system is accomplished by an energy

Figure 10 Schematic representation of a molecular region in a
hybrid simulation. (From [48]).
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transfer scheme. The energy is added or removed from
the microscopic system to parallel the macroscopic tem-
perature without modifying the mean velocity of the par-
ticles. The energy transfer takes place independent of
each dimension and is accomplished by the velocity
vectors of the atoms [42,61-68].
Issues related to boundary conditions in hybrid multiscaling
modelling
Drikakis and Asproulis [69] applied macroscopic bound-
ary conditions in hybrid multiscale modelling. MD
microscopic simulation was employed. They employed
the methods for various liquid and gas flows with heat
transfer and identified specific parameters for accuracy
and efficiency. Their work has shown that knowledge
about boundary conditions development and application
is needed in multiscale computational frameworks. Con-
tinuum temperature and velocity as well as macroscopic
pressure constrain molecular domain. Inconsistent pres-
sure can shrink the simulation domain and the particles
may drift away generating errors and instabilities in the
hybrid procedure. Also, the size of the regions for the
application of velocity constrains is important to avoid
unrealistic heat transfer across the computational
domain and inconsistencies between the molecular and
continuum state. Resampling frequency and the termi-
nation of the atomistic region have significant impact in
the resampling techniques and these can influence trap-
ping of particles in the constrained region and may
cause deviations between the macroscopic and micro-
scopic velocities. The domain termination needs correct
continuum pressure application.

Challenge in biomimetic flow simulation
The task of imitating biological functional surfaces with
variety of complex three-dimensional micro- and nano-
structures is very challenging in biomimetic flow simula-
tion. The transfer of biological morphologies of plants
and animals by imitating both geometrical and physical
similarity to technological applications is to be identified
[70-127]. Studies on micro surface structures of different
species are to be made by scanning electron microscope
(SEM) and atomic force microscope (AFM) to imitate
engineering functional surfaces. The mesoscopic LBM
has been applied in studying electro-osmotic driving
flow within the micro thin liquid layer near an earth-
worm body surface [128]. The moving vortices give the
effect of anti soil adhesion. Few multiphase LBM models
are the pseudo-potential model, the free energy model
and the index-function model [129-132]. In LBM, effec-
tive interaction potential describes the fluid-fluid inter-
action. Interface is introduced by modelling the
Boltzmann collision operator imposing phase separation.
Also, the fluid-fluid interactions are represented by a
body force term in Boltzmann equation. In this case,

second-order terms in the pressure tensor are removed
and more realistic interfacial interactions are produced.
Hard spheres fluids, square well fluids and Lennard-

Jones fluids are model fluids in MD. The fluid flow and
heat transfer in micro-scale and nano-scale systems get
microscopic and nanoscopic insight from MD [133].

Conclusions
A comprehensive and state-of-the-art review of CFD
techniques for numerical modelling of some biomimetic
flows at different scales has been done. Fluid-fluid inter-
faces contacting with functional solid surfaces have been
discussed. The multiphysics modelling at different scales
by Navier-Stokes and energy equations, mesoscopic
LBM, MD method and combined continuum-MD
method with appropriate coupling schemes have been
dealt with in detail.
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