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Abstract

Regular arrays of Ti,Snq., O, nanoflakes were fabricated through glancing angle sputter deposition onto self-
assembled close-packed arrays of 200-nm-diameter polystyrene spheres. The morphology of nanostructures could
be controlled by simply adjusting the sputtering power of the Ti target. The reflectance measurements showed
that the melon seed-shaped nanoflakes exhibited optimal properties of antireflection in the entire visible and
ultraviolet region. In addition, we determined their anisotropic reflectance in the direction parallel to the surface of
nanoflakes and perpendicular to it, arising from the anisotropic morphology.

Introduction

Much research has recently been focused on the design
of nanoscale semiconductor oxide materials with con-
trolled morphology and novel morphology-dependent
physical properties. As an n-type semiconductor oxide
with a wide band gap (E; = 3.6 eV at 300 K), SnO, is
well known for its potential applications in gas sensing
[1], photoconductors [2], photocatalysis [3], and dye-
sensitized solar cells [4]. Similar to other highly trans-
parent semiconductors, SnO, is also expected to be a
competitive candidate for optical devices [5]. To opti-
mize the optical properties, tuning the composition and
tailoring the morphology are very important.

Numerous techniques have been developed to synthe-
size SnO, films. The advantage of magnetron sputter
deposition lies in the ease and flexibility of doping,
which is an effective method to adjust the composition,
and to ensure good homogeneity and repeatability. Ti is
an appealing alternative for doping, compared to other
elements quantities of which are restricted due to the
emergence of the second phase. Owing to the isostruc-
ture (rutile type) and slightly different lattice parameters
of TiO, and SnO,, the metal cations can replace each
other in a wide concentration region [6].

On the other hand, the morphology of films can be
modulated by the glancing angle deposition (GLAD)
technique. The GLAD technique, which exploits the
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shadowing effects, is applied to fabricating a variety of
nanostructures, such as columns, helixes, and springs
[7-11]. With the combination of GLAD and magnetron
sputter deposition techniques, arrays of uniquely shaped
nanostructures built from a wide range of material sys-
tems can be created. However, the preparation of oxides
by glancing angle sputter deposition is rarely reported,
as the sputtering of oxide targets is hard to maintain in
the pressure technically required for GLAD. In this
study, periodic arrays of Ti,Sn;_,O, nanostructures were
grown on patterned Si substrates using GLAD with the
simultaneous deposition of DC and RF sputtering
sources. The RF sputtering of the SnO, target at low
pressures resulted owing to the DC sputtering of the Ti
target. The morphology of nanostructures can be modu-
lated by the regulation of the sputtering power.

Methods

The Ti,Sn;_,O, nanostructures were prepared on Si(001)
substrates that were patterned using 200-nm-diameter
hexagonal close-packed polystyrene microspheres in an
ultrahigh vacuum magnetron sputter deposition system.
Ti,Sn; O, depositions were carried out using a 6-cm-
diameter Ti target (99.99% pure) and a 6-cm-diameter
SnO, target (99.9% pure) mounted at an angle of
120° with respect to each other, with the substrate backed
against the Ti target, as shown in Figure 1a, b. The deposi-
tion angle o, equaling #; + 6, (defined in Figure 1b), was
selected as 85°. Sputtering was carried out at 0.15 Pa
which was held constant during all depositions in 99.999%
pure Ar. No external substrate heating was applied.
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(a)

(b) the side view.

Figure 1 Schematic illustration of the relative positions of the substrates, Ti targets and SnO, target from (a) the bird’s eye view and
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Power-regulated DC and RF power supplies were
employed to provide the discharge currents of 0.15, 0.20,
and 0.25 A, respectively (for three samples, 1#, 2#, and 3#)
at 340 V for Ti, and a radio frequency current of 130 mA
at 500 V for SnO,. The Ti,Sn;_,O, nanostructures were
obtained with simultaneous deposition from sputtering
sources like Ti and SnO, onto a stationary substrate. The
morphology of all the samples was examined by scanning
electron microscopy (SEM), with their structure identified
by X-ray diffraction (XRD) analysis, and the reflectance
measured with a spectrophotometer.

Results and discussion

Figure 2 shows the typical SEM micrograph of the Si
(001) substrate which is covered with a regular, hexago-
nal close-packed array of 200-nm-diameter polystyrene

Figure 2 Scanning electron micrograph from a close-packed
array of 200-nm-diameter polystyrene spheres on Si (001)
substrates.

spheres. The polystyrene sphere layer exhibits various
crystalline defects, including the vacancy, dislocation,
and grain boundary, as illustrated in this figure. The for-
mation of defects is attributed to a combination of
the nanosphere’s polydispersity and kinetic limitations
during the drying process.

For the deposition step, the power of RF sputtering
was fixed, while the power of DC sputtering was regu-
lated at the discharge currents 0.15, 0.20, and 0.25 A,
respectively, for the three prepared samples named as
1#, 2#, and 3#. Their structures were identified by XRD,
indicating an amorphous state in all the samples. As for
the morphology, Figure 3 shows typical SEM micro-
graphs of 1#, 2#, and 3#. Arrays of well-separated
Ti,Sn; ,O, nanostructures were produced. The regular
hexagonal arrays replicate the close-packed pattern of
the polystyrene spheres, which indicates that each nano-
sphere leads to the formation of a nanostructure. It
illustrates that substrate patterning is effective in posi-
tioning GLAD nanostructures into ordered arrays.
Atomic shadowing and adatom diffusion are the domi-
nant growth mechanisms in the process of GLAD. Obli-
que angle flux incidence enhances atomic shadowing
which produces areas that vapor flux cannot directly
reach while adatom mobility is too low for surface diffu-
sion to fill the voids [12]. Nanosphere templates are
favorable to further enhance the atomic shadowing as
nucleation sites for nanostructures. The substrate is sha-
dowed during deposition, first by the array of nano-
spheres and then by the growing nanostructures. By
causing the vapor flux to arrive at an extreme glancing
angle (which is 85° in our work) and applying periodic
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Figure 3 Scanning electron microscopic images of Ti,Sn;_,O,
films deposited at various discharge current () of Ti target: (a)

015 A; (b) 020 A; and (c) 0.25 A.

polystyrene sphere arrays as templates, atomic shadow-
ing is greatly enhanced and regular close-packed arrays
of nanostructures can be engineered.

It is observed that the thickness of the nanoflakes in
the shape of melon seeds, shown in Figure 3a, decreases
as a function of height, which is attributed to the limited
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adatom surface diffusion and atomic shadowing effects.
Besides, the length-width ratio of nanoflakes increases
gradually with the enhancement of the discharge cur-
rent. The average length-width ratios of the sample
1#-3# were measured through a number of micrographs
and are outlined in Table 1.

The effect of the deposition parameter to the mor-
phology of nanostructures was studied. As GLAD is a
physical vapor deposition process in which the incident
flux impinges the substrate from an oblique angle, caus-
ing atomic shadowing and resulting in highly porous
nanostructures [13], the morphology of nanostructures
is closely related to the direction and velocity of the
incident flux. With the incident flux from lateral SnO,
target, the direction of the growth front was changed
from perpendicular to lateral, leading to an increase of
the growth rate in the direction parallel to the SnO,
flux and a decrease in the perpendicular direction [14].
As a result, the width of the nanostructures became
broadened parallel to the SnO, flux, and suppressed
perpendicular to it, as shown in Figure 3a. The arrange-
ment of the nanoflakes corresponds with the direction
of SnO, flux illustrated in Figure 1la, confirming that the
nanostructures were deformed by the incident flux that
caused anisotropic lateral growth. With the increased
sputtering rate of the Ti target, the effect of lateral
SnO, flux was gradually overweighed by Ti flux, result-
ing in the increase of the length-width ratio. Thus, it
can be concluded that the sputtering rates of Ti target
and SnO, target have a great influence on the morphol-
ogy of nanostructures.

To investigate the relationship of the sputtering rate
with the shape of nanostructures, the depositions of Ti
films were carried out, with the discharge currents set to
0.15, 0.20, and 0.25 A, respectively, and other conditions
consistent with the depositions of Ti,Sn;_,O,. The thick-
nesses of the prepared Ti films for the three specimens are
42.3, 74.4, and 91.2 nm, respectively, measured through
the SEM micrographs (the resolution of the applied scan-
ning electron microscope is 2.0 nm). Because the thickness
of the Ti films is directly proportional to the sputtering
rate of the Ti target with other factors being held constant,
the question can be transformed to the relationship of the
thickness of Ti films with the length-width ratio of nano-
flakes, as illustrated in Figure 4. This result confirms that
the average length-width ratio of the nanostructures holds
a linear relationship with the thickness of the Ti films,

Table 1 The average length-width ratios of the samples
and corresponding parameters

Sample ID 1# 24 3#
Discharge current (A) 0.15 0.20 0.25
Length-width ratio 1.19 1.53 2.29
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Figure 4 The length-width ratio of nanostructures versus the

thickness of corresponding Ti films.

suggesting the linear dependence of the length-width ratio
on the sputtering rate of Ti target. Accordingly, the
morphology of the nanostructures can be modulated by
regulating the sputtering power of Ti target.

In view of the anisotropic morphology of the nano-
flakes, the anisotropism of the optical property was stu-
died. The reflectances of samples 1#, 2#, and 3# were
measured using a spectrophotometer. Figure 5a shows
the directions of the incident light. The reflectance in
the direction parallel to the surface of nanoflakes is
marked as R||, while the reflectance in the other direc-
tion is marked as R,. Figure 5b provides the R|; and R,
of the samples 1#, 2#, and 3# in the spectral range of
200-750 nm. It indicates that the reflectance rises as the
Ti content increases, and that the reflectance of sample
1# is almost wavelength independent, which agrees with
the previously reported study on the optical properties
of metal-dielectric composite media close to the perco-
lation threshold [15-17]. In addition, it is notable that
the reflectances of samples 1# and 2# are rather low,
especially in the direction parallel to the surface of
nanoflakes. This can be explained by the model of two-
dimensional subwavelength antireflection nanogratings.
The earlier report showed that the gradient-index layer
may significantly influence the reducing reflection [18].
Hence, the gradient-duty cycle subwavelength nanograt-
ings were designed to suppress the reflection, which
functioned by providing a graded transition of the
refractive index between air and the substrate [19-21].
Because of the gradient width and the thickening of the
nanoflake with height, it can be approximately equiva-
lent to a gradient-duty cycle subwavelength nanograting,
which accounts for the effect of antireflection. Compar-
ing the reflectance in two directions, it is evident that
Ry, is apparently lower than R, for all the samples. This
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Figure 5 (a) Schematic illustration of the incident and reflected
lights, with the reflectance in two directions marked as R and

R, respectively; and (b) the R and R, of samples 1#-3# at the

wavelength in the range of 200-750 nm.

feature can be attributed to the anisotropism of the
morphology, which plays a crucial role in the anisotrop-
ism of the optical property. It demonstrates that the
preparation method we proposed in this article can
accomplish an adjustment to the morphology of nanos-
tructures, and ultimately the tuning of the properties.

Conclusions

We have reported a general and an effective process for
producing semiconductor oxide materials with controlla-
ble morphology and properties by glancing angle sputter
deposition. Periodic arrays of Ti,Sn; ,O, nanostructures
were prepared on patterned Si substrates through the co-
sputtering of Ti and SnO,. The shape of Ti,Sn;_,O,
nanostructures, characterized by the length-width ratio
which linearly depended on the sputtering rate of Ti tar-
get, could be controlled by adjusting the sputtering
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power of Ti target. Optical properties were studied, and
the results confirmed that the melon seed-shaped nano-
flakes, which were approximately equivalent to gradient-
duty cycle subwavelength nanogratings, possessed very
low reflectance. Furthermore, their reflectances were ani-
sotropic, which can be ascribed to the anisotropism of
the morphology. Consequently, this study provides
the opportunity to design optical devices by creating
nanostructures with tailored morphology and unique
performance.

Abbreviations
GLAD: glancing angle deposition; SEM: scanning electron microscopy; XRD:
X-ray diffraction.
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