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Abstract

We study the excitonic effects on the second-order nonlinear optical properties of semi-spherical quantum dots
considering, on the same footing, the confinement potential of the electron-hole pair and the Coulomb interaction
between them. The exciton is confined in a semi-spherical geometry by means of a three-dimensional semi-
parabolic potential. We calculate the optical rectification and second harmonic generation coefficients for two
different values of the confinement frequency based on the numerically computed energies and wavefunctions of
the exciton. We present the results as a function of the incident photon energy for GaAs/AlGaAs quantum dots
ranging from few nanometers to tens of nanometers. We find that the second-order nonlinear coefficients exhibit
not only a blue-shift of the order of meV but also a change of intensity compared with the results obtained
ignoring the Coulomb interaction in the so-called strong-confinement limit.

Introduction
Nonlinear optical properties of semiconductor quantum
dots have attracted considerable interest due to their
several potential applications [1-4]. In particular, sec-
ond-order nonlinear optical properties, such as non-
linear optical rectification (OR) and second harmonic
generation (SHG), have received special theoretical [5-8]
and experimental [9,10] attention due to their magni-
tudes being stronger than those of high-order ones,
making them the first nonlinear optical effects experi-
mentally observed.
The confinement of carriers provided by a quantum

dot is well described by a parabolic potential when only
the lowest excited states of the carriers are considered.
However, self-assembled quantum dots growth in the
laboratory usually exhibit asymmetrical shapes that
ensure the generation of nonlinear optical effects. In
order to model these asymmetries, an asymmetrical
potential is required.
Recently, several authors [5,6,8] studied the effects of

an exciton on the second-order nonlinear properties in
one-dimensional semi-parabolic quantum dots. Using
analytical approximate results, they showed that the
excitonic effects enhance significantly the OR and SHG
coefficients. They used the so-called strong-confinement

limit, ignoring in this way the Coulomb interaction
between electron and hole because of the quantum dot
dimensions are smaller than the effective Bohr radius,
and finding that the excitonic effect reduces itself to an
effective-mass model in one particle scheme.
In this study we find eigenenergies and eigenstates of

an exciton in a semi-spherical quantum dot solving the
corresponding three-dimensional Schrödinger equation
using a finite elements method and taking into account
both the confinement and Coulomb potentials of the
electron-hole pair. We present the OR and SHG coeffi-
cients as a function of the incident photon energy with
and without Coulomb potential. Our results show that
energy and intensity of the peaks in the second-order
nonlinear optical coefficients change when Coulomb
interaction is introduced.
This article is organized as follows. In “Theory” sec-

tion, we present the characteristic quantities of the har-
monic and Coulomb potentials, and the definitions of
the weak- and strong-confinement limits in terms of
these parameters. In addition, we present the analytical
expressions for the optical nonlinearities, such as OR
and SHG, obtained by the density matrix formalism. In
“Results” section, we show the OR and SHG coefficients
with and without Coulomb interaction as a function of
the incident photon energy for two quantum dot sizes.
We also give account of the changes presented by the* Correspondence: j.florez34@uniandes.edu.co
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second-order nonlinear coefficients focusing in the role
played by the Coulomb interaction. Conclusions are
summarized in final section.

Theory
The effective-mass Hamiltonian for the electron-hole
pair in the three-dimensional quantum dot reads [11]
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2m∗
h
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4πε|re − rh| , (1)

where m∗
e and m∗

h are the effective masses of the elec-
tron and the hole, respectively, ε is the background
dielectric constant and V (ri) is the three-dimensional
semi-parabolic potential that we define as
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The angle θ is the usual polar angle in spherical coor-
dinates, and ω0 the oscillator frequency considered in
this study the same for the electron and the hole. The
potential defined in Equation 2 confines the exciton in
the upper half of a sphere, i.e., the quantum dot has a
semi-spherical shape.
Hamiltonian (1) can be separated in terms of center-

of-mass and relative coordinates, respectively,
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+
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2
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0R
2 +

p2

2μ
+
1
2

μω2
0r

2 − e2
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where M = m∗
e +m∗

h is the total mass, and
μ = m∗

em
∗
h/M is the reduced mass. The center-of-mass

and relative position coordinates are defined as usual,

R =
m∗

ere +m∗
hrh

M
, r = re − rh, (4)

with the corresponding momenta P = - iħ∇R and p =
- iħ∇r in terms of pe and ph,

P = pe + ph, p =
μ

m∗
e
pe +

μ

m∗
h

ph. (5)

The explicit separability of the center-of-mass and rela-
tive coordinates in Equation 3 lead to the following total
envelope wave function and total energy for the system:

Ψ (re, rh) = Φ (R) φ (r) , (6)

E = ER + Er. (7)

The center-of-mass part of Hamiltonian (3) is a three-
dimensional semi-parabolic oscillator that can be solved
analytically. Therefore, the problem is now reduced to
solve the relative motion Hamiltonian:

Hr =
p2

2μ
+
1
2

μω2
0r

2 − e2

4πε|r| . (8)

Hamiltonian (8) has been solved analytically in two
limiting cases (strong and weak confinement) for one-
dimensional quantum dots. The eigenfunctions and
eigenvalues are presented in references [5] and [8]. In
one-dimensional case, the confinement potential also
imposes constraints to spatial coordinates, resulting in a
hydrogen-like (asymmetric-harmonic) reduced particle
Hamiltonian for weak (strong) limit.
The harmonic potential in Equation 8 defines both the

size L of the quantum dot,

L =

√
h̄

μω0
, (9)

and the energy quanta ħω0 due to confinement, which
is related to L by

h̄ω0 =
h̄2

μL2
. (10)

On the other hand, the Coulomb potential defines the
effective Bohr radius a∗

0 and the effective Rydberg energy
R∗ of the electron-hole interaction,

a∗
0 =

4πεh̄2

μe2
, (11)

R∗ =
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4πεa∗
0
=

μe4

h̄2(4πε)2
. (12)

The strong-confinement limit is established when
L � a∗

0, or equivalently h̄ω0 � R∗, and the weak-
confinement limit when L � a∗

0, or h̄ω0 � R∗.
The second-order nonlinear optical coefficients can be

obtained by density matrix approach and perturbation
expansion method [12,13]. The expression for the OR
coefficient, within a two-level system approach, is given
by [5,6]

χ
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2
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(13)

where e is the electron charge, ss is the density of
electrons in the quantum dot, T1 is the longitudinal
relaxation time, T2 is the transverse relaxation time, and

μ01 = | 〈ψ0|r|ψ1〉 |, (14)
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δ01 = | 〈ψ1|r|ψ1〉 − 〈ψ0 |r|ψ0〉 |, (15)

ω01 =
E1 − E0

h̄
. (16)

For the resonance condition

h̄ω ≈ E1 − E0, (17)

there is a peak intensity given by (1/T1 ≪ 1/T2 ≪
ω01)

χ
(2)
0,max = 2

e3σsT1T2
ε0h̄

2 μ2
01δ01. (18)

The SHG coefficient in a three level system is [8]

χ
(2)
2ω =

e3N
ε0

× μ01μ12μ20

(h̄ω − E10 − ih̄Γ10) (2h̄ω − E20 − ih̄Γ20)
.
(19)

where N is the density of carriers in the quantum dot,
Eij = Ei - Ej, Γ10 = Γ20 = Γ0 are the relaxtion rates, and

μij = | 〈ψi|r|ψj
〉 |, (20)

Under the double resonance condition, i.e., ħω ≈ E10 ≈
E20/2, the intensity of the peak is given by

|χ (2)
2ω,max| =

e3N
ε0

μ01μ12μ20

h̄2Γ 2
0

. (21)

and its energy by

h̄ω ≈ E20 + 2E10
4

. (22)

Results
In this study, the results are presented for a GaAs/
AlGaAs structure. We have used the following para-
meters in the calculations: m∗

e = 0.067m0, m
∗
h = 0.09m0

(m0 is the mass of a free electron) [4], T1 = 1 ps, T2 =
0.2 ps [12], ss = 5 × 1024 m -3 [5], ε = 12.53, Γ0 = 1/
0.14ps -1, N = 3 × 1016 cm-3 [8].
In Figure 1, we plot the characteristic lengths and

energies for the confined particle in a GaAs/AlGaAs
quantum dot as a function of the confinement frequency
ω0. a

∗
0 and R∗ are independent on ω0 because they are

related to the Coulomb potential. In Figure 1a, we can
see that the lengths L and a∗

0 are of the same order of
magnitude for a confinement frequency around ω0 = 1 ×
1013 s-1. In Figure 1b, we observe that also ħω0 and
R∗ show similar values around ω0 = 1 × 1013 s-1. For
this reason, we conclude that, in this frequency range,
neither the strong-confinement limit nor the weak limit

can be assumed because both interactions, harmonic
and Coulomb, are important. Therefore, we propose a
numerical technique to calculate eigenenergies and
eigenstates of Hamiltonian (8), considering the harmo-
nic and Coulomb potentials.
With the aim of exploring the nonlinear behavior at

higher frequencies, i.e., when the quantum dot size is
smaller than in the previous case, we choose ω0 = 2 ×
1014 s-1, in which the quantity L is less than a∗

0, or ħω0

is greater than R∗, differing in both cases by one order
of magnitude as can be seen in Figure 1. Because of this
difference, several authors [5,6,8] used the strong-con-
finement limit as a satisfactory approximation in the
case of small quantum dots. Accordingly with Equation
9, the frequencies ω0 = 1 × 1013 s-1 and ω0 = 2 × 1014

s-1 define a quantum dot size of L = 17.4 nm and L =
3.9 nm, respectively. This means that our results are sui-
table for the current quantum dot sizes that range from
few nanometers to tens of nanometers.
We find numerically eigenenergies and eigenstates of

Hamiltonian (8) by a finite elements method for the two
frequencies mentioned above. We have used the soft-
ware COM-SOL Multiphysics, which offers the possibi-
lity of defining a geometry, in this case the upper half of
a sphere, and to solve the time-independent Schrödinger
equation with appropriate boundary conditions.

Figure 1 Characteristic (a) lengths and (b) energies for the
confined particle in a GaAs/AlGaAs quantum dot as a function
of the confinement frequency. The red (black) lines correspond to
L and ħω0 (a∗

0 and R∗), respectively.
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The terms involving quantum states and energies in
Equations 13 and 19 are found using the eigenstates and
eigenenergies previously calculated. The OR and SHG
coefficients are shown in Figures 2 and 3, respectively.
Figures 2a and 3a correspond to ω0 = 1 × 1013 s-1, and
Figures 2b and 3b to ω0 = 2 × 1014 s-1. In each figure,
we present the corresponding nonlinear optical coeffi-
cient considering excitonic effects with and without
Coulomb interaction. For comparative purposes, we also
present the case without excitonic effects, i.e., when
only one electron exists in the quantum dot.
Figures 2 and 3 reproduce the reported results quite

well [5,8] regarding the enhancement of the nonlinear
optical coefficients due to the quantum confinement of
the exciton. However, the same figures show addition-
ally a significant blue-shift of the OR and SHG peaks
when both the harmonic and Coulomb potentials are
taken into account. In Tables 1 and 2, we present the
eigenenergies of the exciton and peak energies of the
OR and SHG coefficients with and without Coulomb
interaction for the two frequencies under study. The
peak energies are estimated by Equations 17 and 22 for
the OR and SHG coefficients, respectively.

We can see from Tables 1 and 2 that the eigenener-
gies obtained with Coulomb inter-action are smaller
than those obtained without that interaction. The expla-
nation to this fact is that there is an attractive Coulomb
potential between the electron-hole pair that implies a
reduction of the eigenenergies for the exciton. However,
the eigenenergies are affected in different ways depend-
ing on the quantum state. For example, for the ground
state ω0 = 1 × 1013 s-1, Table 1, we have an energy dif-
ference of 5.237 meV, while for the first and second
excited states the differences are of 3.472 and 2.784

Figure 2 The OR coefficient as a functions of the incident
photon energy ħω for (a) ω0 = 1 × 1013 s-1 and (b) ω0 = 2 ×
1014 s-1, considering excitonic effects with (red line) and
without Coulomb (black line)interaction. The blue line
corresponds to the case without excitonic effects.

Figure 3 The SHG coefficient as a functions of the incident
photon energy ħω for (a) ω0 = 1 × 1013 s-1 and (b) ω0 = 2 ×
1014 s-1, considering excitonic effects with (red line) and
without Coulomb (black line)interaction. The blue line
corresponds to the case without excitonic effects.

Table 1 Eigenenergies of the exciton and peak energies
of the OR and SHG coefficients with and without
Coulomb interaction for ω0 = 1 × 1013 s-1

Energy (meV) With Coulomb Without Coulomb Diff.

E0 11.218 16.455 5.237

E1 26.147 29.619 3.472

E2 40.000 42.784 2.784

OR peak energy 14.929 13.164 1.765

SHG peak energy 14.660 13.164 1.496
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meV, respectively. We have a similar situation for ω0 =
2 × 1014 s-1, Table 2. This is because the mean spatial
separation between the electron and the hole increases,
and therefore the Coulomb interaction decreases, as the
energy of the quantum state increases. The final result
is a blue-shift of the OR and SHG peaks of the order of
meV for both ω0 = 1 × 1013 s-1 and ω0 = 2 × 1014 s-1.
In addition, the OR and SHG coefficients exhibit dif-

ferent peak intensities depending on the consideration
of the Coulomb interaction, as it can be seen in Figures
2 and 3. This fact originates from the modification of
the dipole matrix elements defined in Equations14, 15,
and 20 when the Coulomb interaction is considered.
According to Equation 18, the peak intensity of OR
coefficient depends essentially on the product μ2

01δ01,
while for SHG coefficient, Equation 21, the peak inten-
sity depends on μ01 μ12 μ20. Tables 3 and 4 show the
values of these dipole matrix element products with and
without Coulomb interaction for the two frequencies
considered. As one can see, the product μ2

01δ01 is greater
with Coulomb interaction than without it for both con-
finement frequencies. Therefore, in Figure 2a, b, the OR
intensity is higher in the former case than in the later
one. In the case of SHG coefficient, the product μ01 μ12
μ20 is smaller with Coulomb than without that interac-
tion. This fact makes the SHG intensity smaller in the
former case as can be seen in Figure 3a, b.

Conclusions
Contrary to the assumption that Coulomb interaction
can be neglected when the quantum dot dimensions are
smaller than the effective Bohr radius, we show that this
interaction affects the excitonic effects of the second-
order nonlinear optical properties of semi-spherical
quantum dots. We find that Coulomb interaction

manifests itself in a blue-shift of the energy peaks of the
order of several meV in the studied spectra. These results
were found for two quantum dot sizes, in the first one
the characteristic quantities of the harmonic and Cou-
lomb potentials are equals, and in the second one they
differ by one order of magnitude. This means that the
Coulomb interaction plays an important role even when
the quantum dot sizes are smaller than the effective Bohr
radius.
Therefore, we encourage experimentalists to carry out

measurements of second-order optical nonlinearities in
asymmetrical quantum dots with the aim of to detect
the magnitude of this effect.
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