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Electron cotunneling through doubly occupied
quantum dots: effect of spin configuration
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Abstract

A microscopic theory is presented for electron cotunneling through doubly occupied quantum dots in the
Coulomb blockade regime. Beyond the semiclassic framework of phenomenological models, a fully quantum
mechanical solution for cotunneling of electrons through a one-dimensional quantum dot is obtained using a
quantum transmitting boundary method without any fitting parameters. It is revealed that the cotunneling
conductance exhibits strong dependence on the spin configuration of the electrons confined inside the dot.
Especially for the triplet configuration, the conductance shows an obvious deviation from the well-known quadratic
dependence on the applied bias voltage. Furthermore, it is found that the cotunneling conductance reveals more
sensitive dependence on the barrier width than the height.

Introduction
Semiconductor quantum dots have been known for their
excellent electronic properties, and hence become
attractive candidates to realize quantum bits and related
spintronic functions [1]. Such spintronic devices are
based on a spin control of electronics, or more specifi-
cally, an electrical control of spin in spin-dependent
transport through a semiconductor quantum dot [2]. A
good understanding of properties of an electron spin in
quantum dots, in particular, its control and engineering
in the electron scattering and transport, is therefore the
key to the success of the perspective applications in
spintronics.
In the Coulomb blockade regime where the sequential

tunneling transport is greatly sup-pressed, electron con-
duction is dominated by cotunneling processes [3-5].
The cotunneling transport can be either elastic if the
transmitting electron leaves the dot in its ground state,
or inelastic if the applied bias exceeds the lowest excita-
tion energy and the dot is left in an excited state. Quan-
tum dots are usually modeled as simple semiclassical
capacitors to explain Coulomb blockade effect and spin-
related transport phenomenon [6]. Although conven-
tional approach like Green’s function or master equation
combined with Hubbard model has been quite success-
ful in both the sequential tunneling and cotunneling

regimes [7], there have been several theoretical attempts
on dealing directly with the many-body Hamiltonian to
study the few-electron transport problem recently [8,9].
However, it still presents a great challenge to obtain a
fully quantum mechanical solution for cotunneling of
electrons through a quantum dot that is beyond the
semiclassic framework of phenomenological models.

Model and Method
An approach beyond the conventional phenomenologi-
cal models is presented to directly solve the many-body
Hamiltonian in the electron transport through a few-
electron system without applying any approximations to
the electron-electron interaction. A schematic view of
our model system is shown in the inset of Figure 1. The
quantum dot is modeled as a one-dimensional double-
barrier structure, each barrier has a height of 50.0 meV
and width of 5.0 nm, and the potential well in-between
has a width of 30.0 nm and depth of -15.0 meV below
the bottom of the outside barriers. Considering the
penetration of the confined states into the barriers, we
have placed two buffer layers on the left and right sides
of the system.
The quantum dot is assumed to be doubly occupied.

Electron transmitting through such a system involves
three electrons, the incident one and two confined ones.
The Hamiltonian of these interacting electrons is given
by
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H3e(x1, x2, x3) =
3∑

i=1

He(xi) +
∑

i>j

e2

4πε0εr| xi − xj | , (1)

He (x) = − h̄2

2m∗
d2

dx2
+ VQD (x) , (2)

where VQD(x) is the potential defining the device
structure, and the effective mass of electrons (m*) and
dielectric constant (εr) are chosen to be the values for
GaAs. In order to obtain a fully quantum mechanical
solution for electron transport through a doubly occu-
pied system, we first compute the energy levels of the
two interacting electrons which are governed by the fol-
lowing Hamiltonian,

H2e (x1, x2) = He (x1) +He (x2) +
e2

4πε0εr| x1 − x2 | . (3)

The one-dimensional problem of two interacting elec-
trons can be mapped into that of a single electron in an
effective two-dimensional potential as follows:

H2D
(
x, y

)
= − h̄2

2m∗ ∇2
x,y + V

(
x, y

)
, (4)

V2D
(
x, y

)
= VQD (x) + VQD

(
y
)
+

e2

4πε0εr| x − y | . (5)

By imposing appropriate symmetry conditions, the
exact energy levels as well as the wave functions of two
interacting electrons can be calculated by a finite-differ-
ence method. By calculating the Coulomb matrix ele-
ments [10], one can estimate the proportion of the
correlation energy in the energy of a two-electron state.
For the example of the ground state, we have
Ec = E2e1 − (

Ee1 + Ee1 +U1111
)
= 1.49 meV which is larger

than 1.42meV, the exchange energy between the ground
and first excited single-particle state U1221.
For the few-particle scattering problem as shown in

Figure 1 the wave function of the three interacting elec-
trons in the incident terminal is given by

ψin (x1, x2, x3) = ϕ1 (x2, x3) eikx1 +
∑

m

rmϕm (x2, x3) e−ikmx1 , (6)
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Figure 1 Differential conductance for an electron transporting through a doubly occupied quantum dot calculated as a function of
the applied bias voltage. Inset: a schematic view of the model system.
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with �m(x) the mth two-particle state being confined
in the quantum dot, and k being the wave vector of the
incident electron. km satisfies

h̄2k2m
/
2m∗ + Em = E + E1, (7)

with E being the energy of the incident electron. Simi-
larly, on the outgoing side, we have

ψout (x1, x2, x3) =
∑

m

tmϕm (x2, x3) eikmx1 . (8)

The interchange symmetry for states with identical
particles requires the following transformation for both
ψin(x1, x2, x3) and ψout (x1, x2, x3) for the spin configura-
tion as shown in Figure 1

ψ (x1, x2, x3) → ψ (x1, x2, x3) + ψ (x2, x1, x3) (9)

− ψ (x3, x1, x2) − ψ (x3, x2, x1) . (10)

The three-particle scattering problem can now be
mapped into the scattering of a single electron in the
following effective three-dimensional potential:

V3D
(
x, y, z

)
=

∑

i=x,y,z

VQD (ri) +
∑

i�=j

e2

4πε0εr| ri − rj | . (11)

The wave function in the scattering area together with
the unknown coefficients tm and rm is solved by using a
quantum transmitting boundary approach [11] which is
recently generalized to the few-particle regime [12]. The
finite-difference algorithm results in a system of linear
equations for N3 unknown variables where N is the
number of the mesh points along each dimension. Here,
we find that converged result can be achieved for N =
50 using the conventional bi-conjugate gradients itera-
tion method with the incomplete LU factorization as a
preconditioner. It is noted that all the electron-electron
interactions including the correlation and exchange
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Figure 2 Cotunneling conductance calculated as a function of the applied bias voltage for the dot occupied by a singlet (thin lines)
and triplet (thick lines).
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effects are fully incorporated in the calculation. The
probability of an electron transmitting through the
device while leaving the others in the mth confined state
in the quantum dot is described by the partial transmis-
sion Tm(E) which is given by

Tm (E) = |tm|2(km
/
k1

)2. (12)

where T1 being for the usual elastic scattering process,
Tm (m > 1) describes the probability of the inelastic
scattering process in which the energy of the outgoing
electron is smaller than that of the incident one. The
total transmission is hence given by

T (E) =
∑

m

Tm (E) . (13)

The differential conductance is therefore given by G
(V) = T (V)e2/h where eV = E with V being the bias vol-
tage. Since we are dealing with electron of definite spin,

the spin degeneracy does not appear in the Landauer
formula.

Result and Discussion
The differential conductance calculated as a function of
the applied bias voltage has been shown in Figure 1.
Around 15.0 mV are seen sequential tunneling peaks
where the energy of the incident electron combined
with that of two confined ones happens to be aligned
with the ground state level of three interacting particles
localized inside the dot.
In the Coulomb blockade regime where the sequential

tunneling transport is greatly suppressed, e.g., when V <
10 mV in Figure 1 electron conduction is dominated by
cotunneling processes [4,5]. Figure 2 plots the conduc-
tance of electron cotunneling through a dot occupied by
a singlet and triplet. Since cotunneling current is gener-
ally several orders of magnitude smaller than the
sequential tunneling, we have to set the precision for
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Figure 3 Cotunneling conductance calculated as a function of the applied bias voltage for the dot occupied by a singlet (thin lines)
and triplet (thick lines). The height of barriers is reduced to 25 from 50 meV.
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the iterative solver to be 10-6 to obtain reliable result.
For the case of a singlet in the dot, it is seen that the
cotunneling conductance closely follows the well-known
quadratic dependence [13] on the applied bias voltage.
The cotunneling conductance in the case of a triplet is
found not only generally larger than the singlet but also
deviates obviously from the quadratic dependence. Actu-
ally, the conductance is seen to be almost linear with
the bias voltage with a very small quadratic term. For
comparison, the conductance of electron cotunneling
through a singly occupied quantum dot exhibits very lit-
tle dependence on the spin configuration of the incident
and confined electrons [14]. Furthermore, it exhibits
much less deviation from the quadratic dependence
than the cotunneling conductance for the triplet
configuration.
It shall be noted that the model used in this study is a

one-dimensional system. For such a simplified model,
both the density of states of the incoming electrons and

electron-electron interactions inside the quantum dot
are dierent from those in the conventional two-dimen-
sional lateral structures, which could at least partially
account for the deviation of the cotunneling conduc-
tance from the quadratic dependence.
As conventional phenomenological models do not

usually give the dependence of the cotunneling conduc-
tance on the structural parameters, it is interesting to
see how the conductance changes with the barrier width
and height. Figure 3 shows the result obtained for a dot
of reduced height of barriers. It is seen that the cotun-
neling conductance increases by more than one order of
magnitude as the height of barriers is reduced by half.
With lower barriers, the sequential tunneling peak
would have red shift and may account for larger influ-
ence on the cotunneling conductance at the low energy
end. However, the sequential tunneling peak for the tri-
plet occupation is beyond 25 meV with lower barriers
and hence shall have very little effect on the cotunneling
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Figure 4 Cotunneling conductance calculated as a function of the applied bias voltage for the dot occupied by a singlet (thin lines)
and triplet (thick lines). The width of barriers is reduced to 2.5 from 5.0 nm.
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conductance for the energy below 8 meV. Nevertheless,
the cotunneling conductance in the case of triplet is
found to increase with even greater amplitude than sing-
let. Therefore, it is the reduced height of barriers instead
of the indirect influence of the sequential tunneling peak
that accounts for the largely enhanced cotunneling
conductance.
Let us see next how the cotunneling conductance

depends on the barrier width. Figure 4 plots the cotun-
neling conductance calculated as a function of the
applied bias voltage for the dot of thinner barriers. With
the width of barriers reduced by half, the cotunneling
conductance is seen to be almost twice as larger as that
with lower barriers. It can therefore be concluded that
the dependence of the cotunneling conductance is more
sensitive on the barrier width than the height.
With lower or thinner barriers, it is seen that the

cotunneling conductance exhibits greater difference
between the cases of singlet and triplet occupations.
The cotunneling conductance in the presence of singlet
is found to increase more rapidly with energy than in
the presence of triplet.

Conclusion
To summarize, we have presented a microscopic theory
of electron cotunneling through doubly occupied quan-
tum dots in the Coulomb blockade regime beyond the
semiclassic framework of phenomenological models.
The cotunneling conductance is obtained from a fully
quantum mechanical solution to the transport problem
of three interacting electrons in a one-dimensional
quantum dot by using a quantum transmitting boundary
method without any fitting parameters. We have
revealed that the conductance exhibits strong depen-
dence on the spin configuration of the electrons con-
fined inside the dot. Especially for the triplet
configuration, we find that the cotunneling conductance
shows an obvious deviation from the well-known quad-
ratic dependence on the applied bias voltage. Further-
more, the cotunneling conductance has been shown to
have more sensitive dependence on the width of the
barriers than on the height.
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