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Abstract

mechanisms beyond the ballistic regime.

Si-SiO,, superlattices are among the candidates that have been proposed as high band gap absorber material in all-
Si tandem solar cell devices. Owing to the large potential barriers for photoexited charge carriers, transport in
these devices is restricted to quantum-confined superlattice states. As a consequence of the finite number of wells
and large built-in fields, the electronic spectrum can deviate considerably from the minibands of a regular
superlattice. In this article, a quantum-kinetic theory based on the non-equilibrium Green’s function formalism for
an effective mass Hamiltonian is used for investigating photogeneration and transport in such devices for arbitrary
geometry and operating conditions. By including the coupling of electrons to both photons and phonons, the
theory is able to provide a microscopic picture of indirect generation, carrier relaxation, and inter-well transport

Introduction

Si-SiO, superlattices have been proposed as candidates
for the high band gap absorber component in all-Si tan-
dem solar cells [1,2]. In these devices, photocurrent flow
is enabled via the overlap of states in neighboring Si
quantum wells separated by ultra-thin oxide layers, i.e.,
unlike in the case of an intermediate band solar cell, the
superlattice states contribute to the optical transitions
and, at the same time provide transport of photocarriers,
which makes it necessary to control both the optical and
the transport properties of the multilayer structure. To
this end, a suitable theoretical picture of the optoelec-
tronic processes in such type of structures is highly
desirable.

There are several peculiar aspects of the device which
require special consideration in the choice of an appro-
priate model. First of all, a microscopic model for the
electronic structure is indispensable, since the relevant
states are those of an array of strongly coupled quantum
wells. In a standard approach, these states are described
with simple Kronig-Penney models for a regular, infi-
nitely extended superlattice [3]. The superlattice disper-
sion obtained in this way can then be used for
determining an effective density of states as well as the
absorption coefficient to be used in macroscopic 1 D
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solar cell device simulators. However, depending on the
internal field and the structural disorder, the heterostruc-
ture states may deviate considerably from regular mini-
bands or can even form Wannier-Stark ladders.
Furthermore, the charge carrier mobility, which has a
crucial impact on the charge-collection efficiency in solar
cells, depends on the dominant transport regime at given
operating conditions, which may be described by mini-
band transport, sequential tunneling, or Wannier-Stark
hopping [4], relying on processes that are not accessible
to standard macroscopic transport models.

In this paper, the photovoltaic properties of quantum
well superlattice absorbers are investigated numerically
on the example of a Si-SiO, multilayer structure
embedded in the intrinsic region of a p-i-n diode, using a
multiband effective mass approximation for the electro-
nic structure and the non-equilibrium Green’s function
(NEGF) formalism for inelastic quantum transport,
which permits to treat on equal footing both coherent
and incoherent transport as well as phonon-assisted opti-
cal transitions at arbitrary internal fields and heterostruc-
ture potentials.

Theoretical model

In order to enable a sound theoretical description of the
pivotal photovoltaic processes in semiconductor nanos-
tructures, i.e., charge carrier generation, recombination
and collection, both optical transitions and inelastic
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quantum transport are to be treated on equal footing
within a consistent microscopic model. To this end, a
theoretical framework based on the NEGF formalism
was developed [5,6] and applied to quantum well solar
cell devices. In this article, we reformulate the theory
for a multiband effective mass Hamiltonian, similar to
[7,8], and extend it to cover the phonon-assisted indirect
transitions that dominate the photovoltaic processes in
Si-based devices. Furthermore, in contrast to the former
case, both photogeneration and transport processes take
place within superlattice states, since escape of carriers
to continuum states is not possible due to the large
band offsets.

Hamiltonian and basis
The full quantum photovoltaic device is described in
terms of the model Hamiltonian

=M+ I:Iy + I:Ip, (total) (1)
i = A9 + Hi, (electronic) (2)
A = He, + Hep + Flee, (interaction) 3)

consisting of the coupled systems of electrons (H.,),
photons (H,), and phonons (H,). Since the focus is on
the electronic device characteristics, only H, is consid-
ered here, however including all of the terms corre-
sponding to coupling to the bosonic systems.

The electronic system without coupling to the bosonic
degrees of freedom is described by

. (0 h? .
A9 - - " AL, (4)
2my
with
U@ =U®+Vo(2)), (5)

where V is the heterostructure potential, and U is the
Hartree term of the Coulomb interaction corresponding
to the solution of Poisson’s equation that considers car-
rier-carrier interactions (He.) on a mean field level.

The Hamiltonian representations for the interaction
terms are obtained starting from the single-particle
interaction potentials. For the electron-photon interac-
tion, the latter is given via the linear coupling to the
vector potential operator of the electromagnetic field A:

A e ~
HEV=_mOA'P (6)
with p the momentum operator and
Awo =3 [A0 b0 +A; 0 - b ]e*, (7

»q
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Ao (A, q) = , (8)

h
€
\/ZSOVthq d
where €, 4 is the polarization of the photon with wave
vector q and energy /1w, q added to or removed from
photon mode (A, q) by the bosonic creation and annihi-
lation operators:

bi’q (t) = b;'qelwxqt/ bk,q (t) = bk,qeilwxqt/ (9)

and V is the absorbing volume.

The vibrational degrees of freedom of the system are
described in terms of the coupling of the force field of
the electron-ion potential V; to the quantized field gy of
the ionic displacement [9]:

Fep(r, )= Y UL +k, 1) VVei[r— (L+1)],

Lk

(10)

with the displacement field given by the Fourier
expansion:

Uy (L, 1) = 3 Uow (4, Q) €@ [a,0(0) + 3 _o(0)],
1 (11)

(@=x7y72),

where the ion equilibrium position is L + &, with L
being the lattice position, and « being the relative posi-
tion of a specific basis atom at this lattice site, and
&Z,Q' daq are the bosonic creation and annihilation
operators for a (bulk) phonon mode with polarization A
and wave vector Q in the first Brillouin zone. The
potential felt by electrons in heterostructure states due
to coupling to bulk phonons can thus be written as

1

JV

fa(t) = & Y Usad® a0+, 0], (2)
A4Q

where r is the electron coordinate, and U, g are
related to the Fourier coefficients of the electron-ion
potential [10].

For numerical implementation of the model, the above
Hamiltonian needs to be represented in a suitable basis.
Owing to the amorphous nature of the SiO, layers, ato-
mistic models are of limited applicability. Furthermore,
the use of an effective mass theory simplifies the electro-
nic model considerably. For a quasi-one-dimensional
multilayer system, where quantization appears only in
the vertical (growth) direction, the corresponding basis
functions have the form:

Yink, (1) = @ik, (1) Uk, (1), (13)

where ?ik, is the envelope basis function for discrete
spatial (layer) index i (longitudinal) and transverse
momentum ky = (k,, k), and Unk, is the Bloch function
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of bulk band #, centered on k. In the case of a system
with large transverse extension, the envelope basis func-
tion can be written as

ek 1
Yik, () = JA xi (), (14)
where 1| = (x, ), A is the cross-sectional area, and y;
is the localized longitudinal envelope function basis ele-
ment. For the latter, finite element shape functions are a
popular choice [8,11]. Here, we will use a simple finite
difference basis equivalent to a separate single band
tight-binding approach for each band [12-14]. In the
above basis, the fermion field operators for the charge
carriers are represented via

V(5,0 = Y Yink, (0 Eink, (1),

ink

(15)

I = ) Vi @Gy, O,

ink)

(16)

where ¢', and ¢ are single fermion creation and annihi-
lation operators.

The representation of the model system Hamiltonian
in the above basis is now obtained in standard second
quantization. For the isolated electronic system, we find

HO (1) = / Brit i« o O (1, 0) (17)
0 n A
= Z Z Z Hi(n/;m(k”)cjnk” (© Gomiey (0, (18)
ij nm k;
with the matrix elements
Hiy), () = f i, O H%n, @ (19)
= |:—h2 / dzx () ;z <2m;'1 @ ;z) Xj (@) + hzks / de;:;):((,;z) (20)

g [ 00D [ @@y (z)] Sun,

2my , (2)

where my, ,, o = x, y, z are the effective mass compo-
nents of band #n. For the step-function shape element
xi (@) = [0 (z — z) — 0 (z — ziz1)] /¥ A of the finite differ-
ence approximation, the above expressions acquire the
form:

hl

2
© ) ) h 1 1
Hiy i (k) = l (m* o )AZ (8iw1j + 8izrj) + |:2A2 <m:«n—z + m,
iz , y

nj.z

o e (21)
+ Wk + YU 8iji { Snms
2m, memy

inx
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where
m* + m*
m:_d: _ i 5 1:|:1’ (22)

and A is the grid size, which is kept constant for
equivalence to the single band nearest-neighbor tight-
binding formulation, where the above Hamiltonian is
written as
HO =8, [—tij (8ir1, + iz1,j) + Didij] (23)
defining the interlayer or hopping elements ¢, and
the intralayer or on-site elements D. In the same way,
the representation of the electron-photon Hamiltonian
(6) in the real-space effective mass basis (13) is
obtained:

He, (t) = / Pri(r, t)He, ¥ (1, 1) (24)
=YD D M (ki K 4 ) Ey (O G ()
q,A injm kH,k?‘ (25)

b p—iwngt | pT iy, qt
X [b,\,qe i@rql 4 b}h_qe'w“‘ ] ,
where the matrix element for interband transitions
(n # m) is obtained from a k - p-type approximation

[8]:

My 0K02) = = A x [ ri s 5) v, 1 (26)

€ /
A~ — mvo (A, qQ)M; (qz) (k) +qy — k&g P (27)

with the Bloch function momentum matrix element

a7 vl ~ .
Pnm = Q Unk, (1‘) PlUmk, (1‘) , (28)
Q
where (Q denotes the unit-cell volume, and
Mi (qz) = / dzx} () €97 (2) . (29)

In the finite difference representation, this last factor
becomes

Mi (qz) = €%y (30)

and the final representation of the electron-photon
interaction Hamiltonian takes the form:

Hey (1) = Z Z Z Mflim (k. q, )‘)anku ()it —q, (1)

Qi mm ki

X [bx,qeﬂ“"qt + b; _qe"‘"q[] .

(31)
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The effective-mass Hamiltonian for electron-phonon
interaction is obtained from (12) in analogy to the elec-
tron-photon interaction:

Hep (1) =) Y D MPQ A&y, ©&ink—q, ()

QA n ki (32)
X [&A,Qe_im”‘ + &LQemmt] .
with
MP(Q, A) = Haa oz (33)

JV

The explicit form of the interaction term still depends
via U, q on the specific phonon modes considered and
will be detailed in the section on the model
implementation.

Green's functions, self energies, and quantum kinetic
equations

Within the non-equilibrium Green’s function theory of
quantum optics and transport in excited semiconductor
nanostructures, physical quantities are expressed in
terms of quantum statistical ensemble averages of single
particle operators for the interacting quasiparticles
introduced above, namely, the fermion field operator g
for the charge carriers, the quantized photon field vector
potential A for the photons, and the ionic displacement
field gy for the phonons. The corresponding Green’s
functions are

G(1,2) = — ;(@(1)@*(g)>6, (electrons)  (34)
DL )= (A(A),  (photons) (35
Dg,s (1,2) = — ;(Z/?a(l)z;{ﬁ (2)>C, (phonons) (36)

where (...)c denotes the contour-ordered operator
average peculiar to non-equilibrium quantum statistical
mechanics [15,16] for arguments 1 = (ry, £;) with tem-
poral components on the Keldysh contour [16].

The Green’s functions follow as the solutions to corre-
sponding Dyson’s equations [9,17-19],

Ja[eran - 2a.9]06.2 -50-2),

[&[(Bhas -mra] e, -0 -2,

Where g,,, (’T))g, and D? are the propagators for nonin-

teracting electrons, photons, and phonons, respectively,
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and <> denotes transverse and boldface tensorial quanti-
ties. The electronic self-energy X encodes the renormali-
zation of the charge carrier Green’s functions because of
the interactions with photons and phonons, i.e., genera-
tion, recombination, and relaxation processes. Charge
injection and absorption at contacts is considered via an
additional boundary self-energy term reflecting the open-
ness of the system. The photon and phonon self-energy
tensors, 7 v and I1”, describe the renormalization of the
optical and vibrational modes, leading to phenomena
such as photon recycling or the phonon bottleneck
responsible for hot carrier effects. The self-energies can
be derived either via perturbative methods using a dia-
grammatic approach or a Wick factorization or using
variational derivatives. Again, for numerical evaluation,
quantum kinetic equations and self-energies need to be
represented in a suitable basis. For this purpose, the
above Green’s functions are replaced by the expressions
in terms of the corresponding basis operators:

, 1/, A /
Gingn (51, = = (B (O, (1)) (38)

Dl (qt,t) =~ ;([bg,q(t) +bia O] [0+ Bma)]), (39)

D (Qtr) = 7;‘1([@;,42@) +ina)][dho) +aso®)]),  (40)

where for the bosonic degrees of freedom, the pre-
sent form is suitable for the description of bulk propa-
gators. Henceforth, any renormalizing effect of the
electronic system on the photons and phonons is
neglected, i.e., the coupling to the bosons corresponds
to the connection to corresponding equilibrium reser-
voirs. While this treatment is generally a good approxi-
mation in the case of phonons, it is valid for the
coupling to the photonic systems only in the case of
low absorption, i.e., weak coupling or very short absor-
ber length. The equilibrium propagators for non-inter-
acting photons and phonons in isotropic media have
the common form (o = v, p):

D‘;’g (G E) = —2mi [Nﬁqu (E F hwgq) + (Nﬁyq + 1) S(E+ hwq)] , (41)

1 1
Dot,R/A ;E _ . . 49
v (@B E—hwqtin E+hoq=+in (42)
In the above expressions, Nj 4 denotes the occupation
of the respective equilibrium boson modes, with the
phonon occupation given by the Bose-Einstein distribu-
tion at lattice temperature T:

NP (eﬂhA’ZA,Q _

2Q = )7, B=(ksT)", (43)
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and the photon occupation related to the modal
photon flux via
Ny =81 V/E (44)
where ¢ is the speed of the light in the active medium.
The modal photon flux, in turn, is given by the modal
intensity of the EM field as ¢,{q = K'q/ (hwy,q).

The use of the equilibrium boson propagators implies
that only the electronic Dyson equations are solved. In
the chosen discrete real-space basis, the components of
the steady-state Dyson and Keldysh equations for elec-
tronic Greens functions are turned into a linear system
(20] (v = ky; E)

-1

G'v) = [{6f} '~ 2M() - TP (45)
GE(v) = [(B+in)1 - HO (k”)]fl, (46)
G'(v) = [6*m)]', (47)
GS(v) = GR(v) [z§’(v) . >:§B(v)] G (v), (48)

for each total energy, E, and transverse momentum,
k;. There are two types of self-energies in the above
equations. The terms ' denote the contact self-energy,
which, in this case, is obtained by electronic mode-
matching to the bulk Bloch states of the flat-band con-
tact region [21]. The components >1 are due to the
interactions of electrons with photons and phonons.
The expressions for these interaction self-energies are
determined as the Fock term within many-body pertur-
bation theory on the level of a self-consistent Born
approximation, and using the equilibrium boson propa-
gators are obtained in the following form (& = v, p)

a0k E) = Y M (ky, ¢, 2[NS G (K E F R q)
»q (49)
+ (NE o + )G (ky; E £ heoy, g ) IM® (K, —q, 1)

and

/2> k;E/_E< k;E,
TR (I E) =i/dE o (K E) e'a( i E')
2w E —E+in

dE Teo(k; E') i G0
- P/ 2w pop Tole(®iE)
where
Teo(kyiE) =i[ 2, (ki E) — 2, (ky; E)]. (51)

Since the principal value integral in the expression for
the retarded self-energy corresponds to the real part of
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the latter and thus to the renormalization of the electro-
nic structure, which is both small and irrelevant for the
photovoltaic performance, it is neglected in the numeri-
cal implementation. A further approximation is made by
neglecting the off-diagonal terms in the band index,
which means that only incoherent interband and sub-
band polarization is considered [18].

Once the Green’s functions and self-energies have
been determined via self-consistent solution of Equa-
tions 45-48 and 49, 50, they can be directly used for
expressing the physical quantities that characterize the
system, such as charge carrier and current densities as
well as the rates for the different scattering processes.

Microscopic optoelectronic conservation laws and
scattering rates

The macroscopic balance equation for a photovoltaic
system is the steady-state continuity equation for the
charge carrier density:

V. jc (1') = gC (1') - RC (l‘) ’ c=e, h/ (52)

where j. is the particle current density, G, is the gen-
eration rate, and R, is the recombination rate of carrier
species c[22]. In the microscopic theory, the divergence
of the electron (particle) current is given by [15,16]:

i 2
Vim=-

dE 3Tk (b 1 B O<(¢ 5 < BV A (f p
v /Znh/dr[z (r, ©SE)G*(r,E)+ 27 (r, 1 E) G* (¢, G E

 (53)
~GR(r,v;E) 2= (r,;E) - G~ (r,r’;E) * (¥, r; E) .

If the integration is restricted to either conduction or
valence bands, then the above equation corresponds to
the microscopic version of (52) and provides on the
RHS the total local interband scattering rate. The total
interband current is obtained by integrating the diver-
gence over the active volume, and is equivalent to the
total global transition rate and, via the Gauss theorem,
to the difference of the interband currents at the bound-
aries of the interacting region. Making use of the cyclic
property of the trace, it can be expressed in the form:

R= ‘2// dsr/ ;jfh /d3r’ [Z=(vr;E) G (r,GE)— 27 (v, r;E) G~ (V, 5 E)], (54)

with units [R] = s %, If we are interested in the inter-
band scattering rate, then we can neglect in Equation 54
the contributions to the self-energy from intraband
scattering, e.g., via interaction with phonons, low-energy
photons (free carrier absorption), or ionized impurities,
since they cancel upon energy integration over the band.
Since inequivalent conduction band valleys may be
described by different bands, the corresponding inter-
valley scattering process has also an interband character
with a non vanishing rate, as long as only one of the
valleys is considered in the rate evaluation. Furthermore,
if self-energies and Green’s functions are determined
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self-consistently as they must be done to guarantee cur-
rent conservation, the Green’s functions are related to
the scattering self-energies via the Dyson equation for
the propagator and the Keldysh equation for the correla-
tion functions as given in Equations 45-48, and will thus
be modified because of the intraband scattering. In the
present case of indirect optical transitions, the Greens
functions entering the rate for electron-photon scatter-
ing between the /" bands are the solutions of Dyson
equations with an intervalley phonon-scattering self-
energy and may thus contain contributions from the X-
valleys. In the same way, the I, Greens functions enter-
ing the electron-phonon I, - X scattering rate contain a
photogenerated contribution. By this way, indirect, pho-
non-assisted optical transitions are enabled.

Implementation for Si-SiO, superlattice absorbers

Electronic structure model

Within the effective mass approximation (EMA) for
silicon chosen in this study, the electrons are described
by a multi-valley picture with different values for
transverse and longitudinal effective masses, similar to
[23]. However, for simplicity, in the case of transverse
X valleys (X), the anisotropy in the transverse mass is
neglected, and an average value is used. The virtual I
states used in the indirect transitions are described by
an additional mass. The holes are modeled by two
decoupled single bands with different effective masses
corresponding to heavy and light holes. Thus, in total,
five bands are used for describing the electronic struc-
ture, three for the electrons (X}, X,, I';), and two for
the holes (I, I',4). The band parameters used in the
simulations are listed in Table 1. The approximate
value for the oxide effective mass is adopted from
[3,24]. For each band, a set of Green’s functions are
computed from the corresponding decoupled Dyson
and Keldysh equations. In the computation of physical
quantities such as electron and hole densities as well
as the corresponding current densities, the summation
over all conduction or valence bands needs to be per-
formed, e.g., for the electron density:

Table 1 Band parameters used in simulations (from
[3,26])

Si SO,
mr. [mo 03 03
my, [mo 098 04
my [mo 019 04
mp, . /mo 016 04
mp, . [mo 049 04
E, T, -T. (V) 35 55
Eo Ty~ X (V) 11 31
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ni= > fomip (55)
b=1“C,XH,Xi
dE
=) f / (=) Giy, (ki E) (56)
Xb: %: T AA

where f;, denotes the degeneracy of the conduction
bands, which is fr, = 1, fx, = 4 and fx, = 2. Similarly, the
electron current in terms of the Green’s functions reads

Ji= Y. filip

b=I. X X1

(57)

dE
= Zbe/ ZhA [tir1Giip (kis E) — tin1iGiap (ki E)] - (58)
b

ki

For the chosen model of the bulk band structure, the
total radiative rate is

2 [ dE,.

Rer=pa f,} 2 1

and the inter-valley phonon scattering rate reads
R 2 /‘ dE
P XT hA r 27 !

[ S [Er o U E)GE (K E) = 22, (K E)GF (K B)]
Ky

Y [E5 . ki BYGE (ki B) - 22, (ki E)GF (ki B)] l (59)

} (60)

Interactions

Optical transitions are assumed to take place only at the
center of the Brillouin zone, i.e., between I, and virtual
I, states, the latter being (de-)populated via phonon scat-
tering from (to) the X valleys, which carry the photocur-
rent. All other transition channels, e.g. electron-phonon
scattering in the valence band before photon absorption,
are neglected at this stage. The momentum matrix ele-
ment in the electron-photon coupling is thus to be taken
between the I, and I, bands at kg = 0. The interaction
matrix elements in (27) are evaluated using an average
effective coupling for both light and heavy holes:

Dev = /2moEp 6 61)

with the Kane energy Ep ~ 10 eV [25].

Four different types of phonons are used in this study
to describe both carrier relaxation as well as phonon-
assisted optical transitions. For the relaxation process, X
- X intervalley scattering mediated by different optical
and acoustic modes is used for the electrons, and scat-
tering with non-polar optical phonon for the holes.
Further broadening is added for both carrier species
through acoustic phonon intravalley scattering. Finally,
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the momentum transfer for the indirect optical transi-
tions is mediated via I, - X intervalley scattering. For all
processes, the electron-phonon interaction is described
by the deformation potential picture, where the coupling
elements in (33) have the general form [25]:

h(DQ)

' (62)
20824,

|Uaql? =

where D is the deformation potential, and p is the
density of the semiconductor material. For intravalley
scattering of electrons by longitudinal acoustic phonons,
the coupling is given by [12]:

hD?
Uaql? = . “Q

63
2pe, (63)

where ¢, is the speed of sound in the semiconductor,
and the interaction is treated as being elastic, i.e., no
energy is transferred. In this case, the phonon occupa-
tion can be approximated as

kgT
h824,q

__ ksT
he,Q'
which leads to a product of coupling and occupation

that does not depend on momentum. As a consequence,

the sum over g, of the exponential in (33) yields a delta
function in space:

1 .
e g
QZ

N]/JLQ o N]/JLQ +1 = (64)

(65)

where L = N_A is the thickness of the device with N,

model layers, resulting in the local self-energy (b = I',, X):
hD2 k T d’k
1] b (E) = N f / H G1]>b kH; E) : (66)

The parameters for intravalley scattering used in the
numerical simulation are p = 2329 g/cmg, ¢, = 9.04 x
10° cm/s, and D, = 8.9322 eV [14].

For X - X and I" - X intervalley scattering, the cou-
pling reads

2 2 P Dul;

67
Q 2092, (67)

U ,

where o labels the phonon mode, and K denotes the
momentum transfer required for the scattering between
two valleys. Using a constant, mode-specific coupling

strength, the self-energy acquires the diagonal form:

h(DyK)2 [ d*k )
0= s [ i broa)
ot

+(NP +1) Cib, (k||; EF hga)]fb'ailf‘
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In the above expression, b = b’ for g-type X - X inter-
valley scattering and b = b’ for f-type X — X scattering
as well as for I" — X scattering. The deformation poten-
tials and phonon energies for the different optical and
acoustic modes participating in the intervalley scattering
process are given in Table 2.

Finally, intravalley scattering of holes via interaction
with nonpolar optical phonons is described by the cou-
pling term [25]:

h(Dop)’
|UA,Q|2 - ( Op) , (69)
20820p
providing the self-energy (b = I, j/n1)
a’k
Ub ) _2pgop f / u Np Gib (ky; E £ h2p) 70)

* (NOP + 1) Gi?,b (ki EF thp)} dij.

For the numerical simulation, an optical deformation
potential of D,, = 10° eV/cm and a constant phonon
energy 7.0,, = 60 meV are used.

Numerical results and discussion

Model system

The model system under investigation is shown schema-
tically in Figure 1. It consists of a set of four coupled
quantum wells of six monolayer (ML) width with layers
separated by oxide barriers of 3-ML thickness,
embedded in the intrinsic region of a Si p-i-n diode.
The thickness of the doped layers is 50 ML, while the
total length of the i-region amounts to 154 ML. The
monolayer thickness is half the Si lattice constant, i.e., A
= 2.716 A. The doping density is Ng = 10'® cm™ for
both electrons and holes. This composition and doping
leads to the band diagram shown in Figure 2.

Density of states
Insertion of the oxide barriers leads to an increase of the
effective band gap in the central region of the diode

Table 2 Phonon parameters for intervalley scattering
used in simulations (from [14,26])

c Mode hQ, (meV)  D;Ks x 10° (eV/cm) Type
r-x, LA 184 245 -
(r-x, 710 576 08 -
X-X, TA 120 05 g
X-X, LA 185 08 g
X-X; LO 612 1 g
X-X, TA 19.0 03 f
X-Xs LA 474 20 f
X-Xs TO 590 28 f
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intrinsic absorber

doped layers

Figure 1 Spatial structure and doping profile of the p-i(SL)-n
model system. The doping level is Ny = 10'® cm = for both

electrons and holes.

from 1.1 to ~ 1.3 eV, as seen in Figure 3, which shows the
transverse momentum-integrated local density of states.
In the actual situation of strong band bending, quantiza-
tion also occurs in the form of notch states in front of

;Um“’\

Figure 2 Band diagram of the p-i(SL)-n model system with the
active quantum well absorber region.

energy £

energy E [eV]
density of states [1028 m? cV'l]

0 Il 1
10 20 30 40 50 60

position z [nm]

Figure 3 Transverse momentum integrated local density of
states of the p-i(SL)-n photodiode at short circuit conditions.

the barriers. The density of states at minority carrier con-
tacts is additionally depleted because of the imposition of
closed-system boundary conditions that prevent the for-
mation of a dark leakage current under bias.

The density of states component at zero transverse
momentum displayed in Figure 4 allows the identifica-
tion of the confined states in the different quantum
wells, which are considerably localized because of the
large internal field, however, with finite overlap between
neighboring wells in the case of the higher states. The
ground state is split because of the different effective
masses of the charge carriers, the effect being more pro-
nounced for the electrons.

Generation and photocurrent spectrum
The spectral rate of carrier generation in the confined
states under illumination with monochromatic light at

100
e
=2
-]
—
> Py
5] (3]
Ll e
= s
= 10 %
1} S
5 4
(=1
o ‘5
=
(¥}
o

position z [nm]

Figure 4 Local density of states in the quantum well region at

zero transverse momentum (k= 0).
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Figure 5 Spatially and energy-resolved charge carrier
photogeneration rate in the quantum well region at short-
circuit conditions and under monochromatic illumination with
energy E, = 1.65 eV and intensity /, = 10 kW/m?,

photon energy E, = 1.65 eV and intensity I, = 10 kW/
m?, is shown in Figure 5. At this photon energy, both
the lowest and the second minibands are populated.
The photocurrent originating in this excitation is shown
in Figure 6. Current flows also in both first and second
minibands, i.e., over the whole spectral range of genera-
tion, which means that relaxation due to scattering is
not fast enough to confine transport to the band edge.
However, transport of photocarriers is strongly affected
by the inelastic interactions, and is the closest to the
sequential tunneling regime.

IS
4264]

15 =

energy E [eV]

=N
spectral current density j(E) [ LA cm

position z [nm]

Figure 6 Spatially and energy-resolved charge carrier short-
circuit photocurrent density in the quantum well region under
monochromatic illumination with energy E, = 1.65 eV, and
intensity 1, = 10 kW/m’.
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Conclusions

In this article, an adequate theoretical description of
photogeneration and transport in Si-SiO, superlattice
absorbers was presented. Based on quantum kinetic
theory, the formalism allows a unified approach to
both quantum optics and inelastic quantum transport
and is thus able to capture pivotal features of photoge-
neration and photocarrier extraction in Si-based
coupled quantum well structures, such as phonon-
assisted optical transitions and field-dependent trans-
port in superlattice states. Owing to the microscopic
nature of the theory, energy-resolved information can
be obtained, such as the spectra for photogeneration
rate and photocurrent density, which shows that in the
case of high internal fields, excess charge is trans-
ported via sequential tunneling in the miniband where
it is generated.

Abbreviations
EMA: effective mass approximation; NEGF: non-equilibrium Green'’s function.

Acknowledgements
The financial support for this study was provided by the German Federal
Ministry of Education and Research (BMBF) under Grant No. 03SFO352E.

Authors’ contributions
UA carried out all of the work related to this manuscript.

Competing interests
The author declares that he has no competing interests.

Received: 19 September 2010 Accepted: 21 March 2011
Published: 21 March 2011

References

1. Green MA: Potential for low dimensional structures in photovoltaics. J/
Mater Sci Eng 2000, 74(1-3):118-124.

2. Green MA: Third generation photovoltaics: Ultra-high conversion
efficiency at low cost. Prog Photovolt: Res Appl 2001, 9:123.

3. Jiang CW, Green MA: Silicon quantum dot superlattices: Modeling of
energy bands, densities of states, and mobilities for silicon tandem solar
cell applications. J Appl Phys 2006, 99(11):114902.

4. Wacker A: Semiconductor superlattices: a model system for nonlinear
transport. Phys Rep 2002, 357:1.

5. Aeberhard U, Morf R: Microscopic nonequilibrium theory of quantum
well solar cells. Phys Rev B 2008, 77:125, 343.

6. Aeberhard U: A Microscopic Theory of Quantum Well Photovoltaics. Ph.D.
thesis ETH Zurich; 2008.

7. Steiger S, Veprek RG, Witzigmann B: Electroluminescence from a
quantum-well LED using NEGF. Proceedings - 2009 13th International
Workshop on Computational Electronics, IWCE 2009 2009.

8. Steiger S: Modeling Nano-LED. Ph.D. thesis ETH Zurich; 2009.

9. Schafer W, Wegener M: Semiconductor Optics and Transport Phenomena.
Springer, Berlin; 2002.

10.  Mahan GD: Many-Particle Physics. Plenum, New York, 2 1990.

11. Kubis T, Yeh C, Vogl P, Benz A, Fasching G, Deutsch C: Theory of
nonequilibrium quantum transport and energy dissipation in terahertz
quantum cascade lasers. Phys Rev B 2009, 79:195323.

12.  Lake R, Klimeck G, Bowen R, Jovanovic D: Single and multiband modelling
of quantum electron transport through layered semiconductor devices. J
Appl Phys 1997, 81:7845.

13. Henrickson LE: Nonequilibrium photocurrent modeling in resonant
tunneling photodetectors. J Appl Phys 2002, 91:6273.



Aeberhard Nanoscale Research Letters 2011, 6:242
http://www.nanoscalereslett.com/content/6/1/242

20.

21,

22.

23.

24.

25.

26.

Jin S: Modeling of Quantum Transport in Nano-Scale MOSFET Devices.
Ph.D. the-sis School of Electrical Engineering and Computer Science College
of Engineering, Seoul National University; 2006.

Kadanoff LP, Baym G: Quantum Statistical Mechanics. Benjamin, Reading,
Mass; 1962.

Keldysh L: Diagram technique for nonequilibrium processes. Sov Phys-
JETP 1965, 20:1018.

Henneberger K, Haug H: Nonlinear optics and transport in laser-excited
semiconductors. Phys Rev B 1988, 38:9759-9770.

Pereira M, Henneberger K: Green’s function theory for semiconductor-
quantum-well laser spectra. Phys Rev B 1996, 53:16, 485.

Pereira M, Henneberger K: Microscopic theory for the influence of
coulomb correlations in the light-emission properties of semiconductor
quantum wells. Phys Rev B 1998, 58:2064.

In steady state, the Green’s functions depend only on the difference 7 =
t - t’ of the real-time variables, which is Fourier-transformed to energy.
For an explicit derivation of the contact self-energy in the effective-
mass tight-binding model, see, e.g., [12].

The dimensions are those of a volume rate, [G, R]=m s .
Jin'S, Park YJ, Min HS: A three-dimensional simulation of quantum
transport in silicon nanowire transistor in the presence of electron-
phonon interactions. J Appl Phys 2006, 99:123719.

While the validity of the EMA for the oxide is debatable, moderate
variations of the parameter should not have a strong impact on the
results, since the dominant dependence is on the barrier energy.
Ridley BK: Quantum Processes in Semiconductors. Oxford Science
Publications; 1993.

Hamaguchi C: Basic Semiconductor Physics. Springer, Berlin; 2001.

doi:10.1186/1556-276X-6-242

Cite this article as: Aeberhard: Theory and simulation of
photogeneration and transport in Si-SiO, superlattice absorbers.
Nanoscale Research Letters 2011 6:242.

Page 10 of 10

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	Introduction
	Theoretical model
	Hamiltonian and basis
	Green’s functions, self energies, and quantum kinetic equations
	Microscopic optoelectronic conservation laws and scattering rates

	Implementation for Si-SiOx superlattice absorbers
	Electronic structure model
	Interactions

	Numerical results and discussion
	Model system
	Density of states
	Generation and photocurrent spectrum

	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	References

