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We investigate theoretically the ground state and transport property of electrons in interacting quantum wires
(QWs) oriented along different crystallographic directions in (001) and (110) planes in the presence of the Rashba
spin-orbit interaction (RSOI) and Dresselhaus SOI (DSOI). The electron ground state can cross over different phases,
e, spin density wave, charge density wave, singlet superconductivity, and metamagnetism, by changing the
strengths of the SOIs and the crystallographic orientation of the QW. The interplay between the SOIs and Coulomb
interaction leads to the anisotropic dc transport property of QW which provides us a possible way to detect the

Introduction

All-electrical manipulation of spin degree of freedom is
one of the central issues and the ultimate goal of spintro-
nics field. The spin-orbit interaction (SOI) is a manifesta-
tion of special relativity. An electric field in the
laboratory frame can transform into an effective magnetic
field in the moving frame of electron and consequently
leads to electron spin splitting. Therefore, the SOI pro-
vides us an efficient way to control electron spin electri-
cally and has attracted tremendous interest because of its
potential application in all-electrical spintronic devices
[1,2]. The spin degeneracy can be lifted by applying mag-
netic field to break the time-reversal symmetry and/or by
applying electric fields to break the spatial inversion sym-
metry. However, the latter could be more easily realized
in spintronics devices. In semiconductors the spatial
inversion symmetry can be broken by the structural
inversion asymmetry and bulk crystal inversion asymme-
try, named, Rashba SOI (RSOI) and Dresselhaus SOI
(DSOI), respectively [3,4]. Usually, the RSOI in semicon-
ductor quantum well is much stronger than that of
DSOI, and therefore, most of the previous theoretical
and experimental studies focused on the RSOI and its
consequence on the spin transport properties in two-
dimensional electron gas (2DEG) [5-7]. In thin quantum
wells, the strength of the DSOI is comparable to that of
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the RSOI since the strength of the DSOI depends signifi-
cantly on the thickness of quantum wells. The interplay
between the RSOI and DSOI leads to interesting phe-
nomena in 2DEG, e.g., the anisotropic photogalvanic
effect [8], and the persistent spin helix [9]. However, the
interplay between the RSOI and DSOI in quantum wires
(QWs) remains relatively unexplored.

Very recently, the anisotropic behavior of transport
property in semiconductor QWs was proposed to detect
the relative strength between the RSOI and DSOI in a
quasi-one-dimensional (Q1D) semiconductor QW sys-
tem [10,11]. However, the effect of the Coulomb interac-
tion on the transport property is not addressed. Since the
Coulomb interaction becomes very strong in Q1 D elec-
tron systems where electrons are strongly correlated, and
therefore the conventional Fermi liquid theory breaks
down. There are no fermionic quasi-particle in Q1 D
electron gas, and the elementary excitations are bosonic
collective charge and spin fluctuations with different pro-
pagating velocities. The Luttinger liquid (LL) theory [12]
is of fundamental importance because it is one of a very
few strongly correlated non-Fermi liquid systems that
can be solved analytically. The LL displays very unique
properties, e.g., the spin and charge separation and the
power-law behavior of the correlation functions. The
unique behavior was observed experimentally in many
Q1 D systems, for instance, narrow QW formed in semi-
conductor heterostructures [13], carbon nanotube [14],
graphene nanoribbon [15], as well as the edge states of
the fractional Quantum Hall liquid [16]. Recent studies
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have found that the RSOI would lead to the mixing
between the spin and charge excitations in QW with the
RSOI alone [17-20]. It is interesting to study the interplay
between the RSOI and DSOI on the ground state and
transport property of QWs in the presence of the Cou-
lomb interaction.

In this study, based on the LL theory, we study the effect
of the interplay between the Coulomb interaction and
SOIs on the electron ground state and transport property
of an interacting QW oriented along different crystallo-
graphic directions in different planes. The electron ground
state can display the transitions among the different
phases, e.g., the spin density wave (SDW), charge density
wave (CDW), singlet superconductivity (SS), and meta-
magnetism (MM), by tuning the crystallographic plane
and orientation of the QW, the strengths of SOIs and the
Coulomb interaction. The anisotropy of the dc conductiv-
ity of interacting QW is induced by the interplay between
the Coulomb interaction and SOIs, which could be used
for detecting the strengths of the RSOI and DSOL

Theory

The Q1 D QW system is shown schematically in
Figure la where electrons are confined laterally and
move freely along the x-axis. The RSOI can be gener-
ated in the region below the top gate, and the DSOI
always exists in the conventional zincblende semicon-
ductors lacking the spatial inversion symmetry, e.g.,
GaAs, InAs, and InSb. The Hamiltonian of noninteract-
ing electrons in a Q1 D QW oriented along different
crystallographic directions in (001) plane is [11]

27,2

o+ V(1) — oyl + Blcos(20)ork — sin(20)oyk]. (1)

Hp =
where 0 is the angle between the orientation of the
QW and the [100] axis, m* is the electron effective
mass, 0; (i = x, ¥, z) are the Pauli matrices, and « and f8
are the strengths of the RSOI and DSOI, respectively.
The linearized non-interacting electron Hamiltonian of
the QW with both RSOI and DSOI is [17,20]

Ho = —ih f D Uy, 2)
V)

where the operators (Y = -1(L),1(R); s = -1({),1(1))
annihilate spin-down () or spin-up (1) electrons near the
left (L) and right (R) Fermi points, respectively.
vj, = yvr — S8V are the four different Fermi velocities,
where vg is the bare Fermi velocity of right- and left-mov-
ing non-interacting electrons, §v = /a2 + 2 + 2aBsin 20/h ,
usually ov << vr. Note that the RSOI and DSOI split the
spin-up and spin-down subbands and make the electron
Fermi velocities become orientation dependent. The total
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Figure 1 Schematic diagram of semiconductor QW, the
constant energy surfaces and the spin orientations of 2DEG.

(a) Schematic diagram of semiconductor QW which oriented along
the crystallographic direction @ with respect to [100] axis in the
crystallographic planes (001), (110), and (111). n is the unit vector
along the normal direction of the crystallographic plane. (b) The
constant energy surfaces and the spin orientations of 2DEG in (001),
(110), and (111) planes.

Hamiltonian of the system including the Coulomb interac-
tion is H = Hy + Hi,, where

= [ [ sty 505 00V, = e 00el) )

The Umbklapp scattering process is neglected because
the Fermi energy in QWs formed in semiconductor het-
erostructure is far from the half-filled case, and the elec-
tron-electron backscattering can be negligible for a
sufficiently long interacting region [17]. Using the boso-
nization technique [21], the Hamiltonian becomes

h m,\?
A —
2
. Z fdx [ZZ (sz?g)2+vakg<r)[;> } (4)
. haufdx [(r;) (9:9,) + (1;") (axﬂ(;)],

Where 9, and 9 are the phase fields for the charge and
spin degrees of freedom, respectively, and Il, and Il are the
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corresponding conjugate momenta. v, and v,; are the propa-
gation velocities of the decoupled charge and spin-collective
modes in the absence of the SOIs (dv = 0), respectively.

For a QW embedded in (110) plane, the Hamiltonian
of the noninteracting electrons reads [11]

2,2 1
- Wk, +V(r) — aoyky, — 2ﬂ sin fo,k,, (5)

Ho 2m*

where the parameters ¢, 3, and 6 are the same as in
Equation (1). The dominant differences are (1) the Fermi

velocity is different U;, = YUp — S8V, where

Sv = \/a2 + B2sin%0/4/h; (2) the effective magnetic field

induced by the DSOI is perpendicular to (110) plane, which
could generate an out-of-plane spin-polarized current; and
(3) the anisotropy is mainly determined by the DSOL.
These differences would lead to the distinct anisotropic
behavior of QWs embedded in (110) plane. For (111)
plane, the DSOI shows the same formulism as the RSOI;
the Hamiltonian is H, = er:f +V(r) = (¢ — 28/+/3)oyk, Which
does not contain any #-dependent term, and therefore the
anisotropic behavior disappear. This isotropic character can
be easily seen from the constant energy surface (see
Figure 1b). We will not discuss the (111) plane any more.
The correlation functions at zero temperature in an interacting
QW in the presence of the SOIs behave as R;(x) ~ |x| 72,

and the exponents ¢y's are determined by [18]

o
acpw = aspw,, = 2 — K,v” — K;v°,

aspw,, = aspw,, = 2(1 +[n7|) = K,v* — n ks,

©®)
ass = arso = 2(1 + [n°|) — n”/K, — K7,
oty 1 = 2 = 18K, — 7 [Ky.
Here
2 278,72
vPlo Vpjo vrr/,o(l — v /51/(-,/'0) + Uiy
Uy +up uiuyp ’
2 82782
Mp/a _ Voo ua/p(l S /(Suplo) +u1u2, )
Uy +us Uius
2 2
Pl = Sv OV, — VT + Uiy
Uy +Up Uity ’
Where 81}% = vpv(,K(,/Kp,(Syi =v,1,K,/K,, and
12 + 12
R 7
LW , YOV
8)

2 2\ ?
v, =V, K, K
+ AR T T T R T T I
2 P K, K,
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are the propagation velocities of coupled collective
modes that depend on the crystallographic orientation
6. From the above equations, one can see that the inter-
play between the RSOI and DSOI will lead to aniso-
tropy, i.e., the dependence on the crystallographic
direction. This is the dominant difference between this
work and the previous study [18]. Interestingly, for a
QW in (001) plane, the spin and charge excitations can
be decoupled again when 0 = 37/4 and o = 3, 0 = n/4
and o = -f, since the coupling between the spin and
charge excitation disappear when Jv = 0 (see the third
term in Equation (4)).

Considering a point-like density-density interaction for
the electron-electron interaction [22,23], we have v, s =
ve/K, s and the parameter K,,; being defined as
I/Kf)/a =1=g, where g = 2V(q = 0)/hmve with V (g =
0) is the electron-electron interaction potential. We con-
sider an infinitely long interacting QW, i.e., a homoge-
nous interacting QW, driven by a time-dependent
electric field E(x, £), which could be realized by applying

a microwave radiation. H, = _\/2 e/ dxE(x, t)0,(x, t)
b1

describes the effect of the ac electric field on the charge
excitation. The total Hamiltonian becomes H = H, +
Hin + H,e. By minimizing the action functional of such
a Q1 D system, we get the equation of motion and con-
sequently obtain the non-local charge conductivity using
the linear response theory:

282 [(u? —v2 +8v*) vp i x|
Gp(JC,a))= [( 1 o ) vr S

h (u% —u%) uq
B (u% — Ug + 51/2) UF eili |x|]
(ui —u3) W

Numerical results and discussions

First, we study how the interplay among the Coulomb
interaction, the RSOI, and the DSOI affects the ground
state of Q1 D electron gas. It is worth to note that if
one does not assume any specific form for electron-
electron interactions, then all four parameters v,(c) and
K,(0) (or equivalently g»||, g2., gaj; and gs,) are indepen-
dent [18]. Figure 2 describes the phase diagram of Q1 D
QW embedded in (001) plane as function of the
strength of the Coulomb interaction K, and crystallo-
graphic orientations @ for the different strengths of SOIs
o and B when K = 0.7. We should stress that the dif-
ferent phases are determined by which correlation func-
tion decays most slowly for |x| — o when the other
correlation functions become negligible. We define the
phase by the dominant correlation function, e.g.,, CDW
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Figure 2 Phase diagram of the ground state of Q1 D electron gas in a QW embedded in (001) plane for v, = 1.2vg, vs = 0.8vf, K5 =
0.7 for different values of the strengths of the RSOl o and DSOI B (in units of fivg). 6 is the crystallographic direction. The regions below
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or SDW. Here the CDW and SDW are actually not the
pure charge and spin fluctuations, but a mixed state of
them induced by the SOIs. Interestingly, one can see
that the ground state of the system displays a crossover
between the CDW and SDW by tuning the crystallo-
graphic orientation for the fixed parameters, e.g., K,, o,
and f3. Note that the ground state of Q1 D electron sys-
tem in the presence of RSOI alone cannot be affected
by tuning the crystallographic orientation [18]. We find
that there are crossovers of the ground state of Q1 D
electron gas between CDW and SDW when we tune the
strengths of the Coulomb interaction and the SOIs. For
a fixed strength of the DSOI, the CDW phase region
will be squeezed and die away gradually, with increase
in the strengths of the RSOI. The ground state of the
system is always SDW at strong RSOI for the arbitrary
orientation of the QW. On the contrary, as the strength
of the RSOI decreases for a given strength of the DSOI,
the CDW phase region expands, and the ground state of
the system becomes the CDW eventually. When ov
>0Vg, i.e., in the region below the dotted line, the

ground state is the so-called MM phase, which was ear-
lier observed in the Q1 D systems, e.g., Ba3Cuy,04Cl,
[24], and attributed to the next-nearest-neighbor cou-
pling in the XXZ model [25]. By tuning the parameters
properly, the ground state of the system exhibits the
crossovers among the SDW, CDW, SS, and MM.

The phase diagram of the ground state for the QW
embedded in (110) plane is very different from that of
the QW in (001) plane for the same parameters v,, v
and K. Tuning the strength of the RSOI at a fixed
strength of the DSOI, the ground state can also transit
from CDW to SDW, but in very narrow region in the
K, - 0 space (see Figure 3). This is because the aniso-
tropy is weaker compared to that of the QW in (001)
plane.

Next, we turn to study the transport property of elec-
tron in an interacting QW. In the dc case, Equation (9)
shows that the charge conductivity of an infinitely long
interacting QW for the different parameters g and Jv.
For the noninteracting QW structure, there is only sin-
gle transverse mode, and thus no anisotropy of the dc
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Figure 3 Phase diagram of the ground state of Q1 D electron gas in a QW embedded in (110) plane. The same as Figure 2, but for a QW
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conductivity can be found. This result can also be
obtained from Equation (9) by taking g = 0, i.e., non-
interacting case, u%z = (vr £ 8v)?; we easily obtain o), =
2¢*/h. When the Coulomb interaction is included but
without the SOIs, i.e., & = B = 0, we can obtain an iso-
tropic conductivity o, = 2I(pez/h from Equation (9). The
spin and charge excitations propagate independently at
the velocities v, and v, in this case. In the presence of
both the Coulomb interaction and the SOIs, the SOIs
mix the spin and charge excitations, leading to anisotro-
pic velocities of the collective excitations u; and u, (see
Equation 8), or equivalently the anisotropic interaction

parameter K;, consequently resulting in the anisotropic

conductivity o, = 2K//Je7'/h. Therefore, the dc conductiv-

ity of the infinitely long-interacting QW depends sensi-
tively on the crystallographic direction 8 of the QW, i.e.,
the anisotropic transport behavior (see Figure 4). Inter-
estingly, the dc conductivity oscillates with varying the
angle 0 with a periodicity 7#. With increasing the
strengths of the DSOI and/or RSOI (see Figure 4a) or
the strengths of the Coulomb interaction (see Figure
4b), the oscillation of the conductivity for the infinitely

long-interacting QW becomes stronger. This is because
the anisotropy of the interaction parameter K;, depends

on the anisotropic velocities of the mixed spin and
charge excitations, which increases when the strengths
of the SOIs or the Coulomb interaction increase.

For an interacting QWs embedded in (110) plane, the
anisotropy of the dc conductivity becomes different (see
Figure 4c,d): (1) The RSOI becomes less important for the
anisotropy of the dc conductivity comparing with that in
(001) plane, the increase of the strength of RSOI only
affects the anisotropy slightly (see the dashed green line
and dotted blue line in Figure 4c), since the anisotropy is
mainly determined by the DSOI. This can be understood
from the formulism of the Fermi velocities

v, = yVr — 8V, where g§y= \/(XZ + B2sin%0/4/h. It is
noted that for (001) plane, the anisotropy of dc conductiv-
ity will disappear with the RSOI or DSOI alone, while for
(110) plane, the anisotropy will disappear only when the
DSOI is absent, which can be understood from the expres-
sion of dv. (2) The effect of the Coulomb interaction on

the anisotropy of dc conductivity is weakened significantly
when compared to that in (001) plane (see Figure 4b,d).
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Figure 4 The dc conductivity dependence of the angle 6. The dc conductivity (in units of e%/h) of electron in an infinitely long-interacting
QW as a function of the angle 8 with a fixed strength of Coulomb interaction g = 0.4 (a) for (001) plane, (c) for (110) plane, where the solid line
(red online) is for & = 0.2 and B = 04; the dashed line (green online) for o = 0.3 and B = 0.2; and the dotted line (blue online) for o = 0.2 and
B =02; (b, d) is the same as (a, c), but with fixed SOI strengths @ = 0.2 and 8 = 0.2 for different strengths of Coulomb interaction. (b) is for
(001) plane and (d) for (110) plane, where the dotted line (blue online) corresponds to g = 04; the dashed line (green online) to g = 0.6; and
the solid line (red online) to g = 0.

Finally, we discuss how to detect the relative strength
of the SOIs utilizing the anisotropic dc conductivity. We
consider a QW embedded in (001) plane. One can tune
the strength of RSOI by adjusting the gate voltage. For a
QW oriented along the [110] axis, i.e., § = 37/4 When
o = f3 the dc conductivity becomes o0, = 2erz/h, where
the Coulomb interaction parameter K, can be deduced
from the experiments which ranges from 0.4 to 0.7 in
semiconductor QWs [26,27]. Therefore, one determines
the relative strength of the RSOI and DSOI from the dc
conductivity. In our calculation, we take the electron
effective mass m = 0.067m,, the strengths of SOIs o and
B are about 1 x 10" eVm which is the typical strength
of SOI in conventional semiconductors [28]. Electrons
only occupy the lowest subband in GaAs QW assuming
the Fermi wavevector is kg = 0.01 nm™.

Conclusions

In conclusion, we investigate theoretically the effect of
the interplay between the Coulomb interaction and the
SOIs on the electron ground state and charge transport
property of interacting QWs oriented along different
crystallographic directions in different planes. We find
that the ground state of electrons in the QWs can tran-
sit among the different phases, e.g., the SDW, CDW, SS,
and MM, by tuning the plane and orientation of the
QW, the strengths of SOIs and the Coulomb interac-
tion. The anisotropy of the dc conductivity in an inter-
acting QW is induced by the interplay between the
Coulomb interaction and SOIs. This anisotropy enables

us to detect the strengths of RSOI and DSOI, which are
very important for the comprehensive understanding of
spin decoherence and constructing all-electrical spintro-
nic device.
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