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Abstract

We study driven by an external electric field quantum orbital and spin dynamics of electron in a one-dimensional
double quantum dot with spin-orbit coupling. Two types of external perturbation are considered: a periodic field
at the Zeeman frequency and a single half-period pulse. Spin-orbit coupling leads to a nontrivial evolution in the
spin and orbital channels and to a strongly spin- dependent probability density distribution. Both the interdot
tunneling and the driven motion contribute into the spin evolution. These results can be important for the design
of the spin manipulation schemes in semiconductor nanostructures.
PACS numbers: 73.63.Kv,72.25.Dc,72.25.Pn

Introduction
Quantum dots, being one of the most intensively stu-
died examples of natural and artificial nanostructures,
attract attention due to the richness in the properties
they demonstrate in the static and dynamic regimes [1].
A possible realization of qubits for quantum information
processing can be done by using spins of electrons in
semiconductor quantum dots [2]. Spin- orbit coupling
makes the dynamics even in the basic systems such as
the single-electron quantum dots extremely rich both in
the orbital and spin channels. If the frequency of the
electric field driving the orbital motion matches the
Zeeman resonance for electron spin in a magnetic field,
the spin-orbit coupling causes a spin flip. This effect
was proposed in refs. [3,4] to manipulate the spin states
by electric means. The efficiency of this process is much
greater than that of the conventional application of a
periodic resonant magnetic field. The ability to cause
coherently the spin flip in GaAs quantum dots was
demonstrated in ref. [5] where the gate-produced elec-
tric field induced the spin Rabi oscillations. In ref. [6]
periodic electric field caused the spin dynamics by indu-
cing electron oscillations in a coordinate-dependent
magnetic field. In addition, these results confirmed that
the spin dephasing in GaAs quantum dots, arising due

to the spin-orbit coupling [7,8] is not sufficiently severe
to prohibit a coherent spin manipulation.
The spin dynamics experiments [5,6] necessarily use at

least a double quantum dot to detect the driven spin
state relative to the spin of the reference electron. Multi-
ple quantum dots realizations become nowadays the sub-
ject of extensive investigation [9]. In double quantum
dots an interesting charge dynamics occurs and requires
theoretical understanding. In this article we address full
driven by an external electric field spin and charge quan-
tum dynamics in a one-dimensional double quantum dot
[10-13]. Despite the simplicity, these systems show a rich
physics. In the wide quantum dots, where the tunneling
is suppressed, and the motion is classical, the interdot
transfer occurs only due to the over-the-barrier motion,
and a chaos-like behavior is usually expected. The irregu-
lar driven behavior in the spin and charge dynamics in
these systems was studied in ref. [14]. In the quantum
double quantum dots, the tunneling between single
quantum dots is crucial and the spin-orbit coupling
makes the interdot tunneling spin-dependent [15-17]. In
quantum systems a finite set of energy eigenstates allows
only for a strongly irregular rather than a real chaotic
behavior. These orbital and spin dynamical irregularities
are important for the understanding of the quantum pro-
cesses in multiple quantum dots.
In this article we consider various regimes for a one-

dimensional double quantum dot with spin-orbit cou-
pling driven by an external electric field and analyze the
probability and spin density dynamics in these systems.
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Hamiltonian, time evolution, and observables
We use a quartic potential model to describe a one-
dimensional double quantum dot [18],

U(x) = U0(−2(x
/
d)2 + (x

/
d)4), (1)

where the minima located at d and -d are separated
by a barrier of height U0, as shown in Figure 1. We
assume that the interminima tunneling is sufficiently
weak such that the ground state can be described with a
high accuracy as even linear combination of the oscilla-
tor states with a certain “harmonic” frequency ω0

located near the minima. The double quantum dot is
located in a static magnetic field Bz along the z-axis and
is driven by an external electric field ℰ(t) parallel to the
x-axis. The full Hamiltonian H = H0 +Hso + Ṽ , where
the time-independent parts are given by

H0 =
p2x
2m

+U(x) − �z

2
σz, (2)

Hso = (βσx + ασy)px, (3)

and the time-dependent perturbation is

Ṽ = −eE(t)x. (4)

Here px is the momentum operator, m is the electron
effective mass, e is the electron charge, Δz = |g|μBBz (we
assume below g < 0) is the Zeeman splitting, and si are
the Pauli matrices. The electron Landé factor g deter-
mines the effect of Bz, which in this geometry is reduced
to the Zeeman spin splitting only. The bulk-originated
Dresselhaus (b) and structure-related Rashba (a) para-
meters determine the strength of spin-orbit coupling
and make the electron velocity defined as

v ≡ ẋ =
i
h̄
[H0 +Hso, x] = px

/
m + βσx + ασy, (5)

spin-dependent.

We use the highly numerically accurate approach to
describe the dynamics with the sum of Hamiltonians in
Equations (2)-(4). As the first step we diagonalize
exactly the time-independent H0 + Hso in the truncated
spinor basis ψn(x) |s〉 of the eigenstates of the quartic
potential in magnetic field without spin-orbit coupling
with corresponding eigenvalues Ens. As a result, we
obtain the basis set |ψn〉 where bold n incorporates the
spin index. For the presentation, it is convenient to
introduce the four-states subset: |ψ1〉 = ψ1(x)|↑〉, |ψ2〉 =
ψ1(x)|↓〉, |ψ3〉 = ψ2(x)|↑〉, |ψ4〉 = ψ2(x)|↓〉, and to note
that the spin-dependent bold index may not correspond
to the state energy due to the Zeeman term in the
Hamiltonian. The wavefunction ψ1(x) (ψ2(x)) is even
(odd) with respect to the inversion of x. In the case of
weak tunneling, assumed here, these functions can be

presented in the form: ψ1,2(x) = (ψL(x) ± ψR(x))/
√
2 ,

where ψL(x) and ψR(x) are localized in the left and in
the right dot, respectively.
As the second step we build in the full basis the

matrix of time-dependent Ṽ and study the full
dynamics with the wavefunctions:

|�〉 =
∑
n

ξn(t)e−iEnt/h̄|ψn〉. (6)

The expansion coefficients ξn(t) are then calculated as:

d
dt

ξn(t) = i
e
h̄
E(t)

∑
ξm(t)xnme−i(Em−En)t/h̄, (7)

Where xnm ≡ 〈ψn|x̂|ψm〉 . The spin-dependence of the
matrix element of coordinate responsible for the spin
dynamics is determined with

i(En − Em)xnm = h̄〈ψn|v̂|ψm〉 (8)

and the spin-dependent velocity in Equation (5).
With the knowledge of the time-dependent wavefunc-

tions (6) one can calculate the evolution of probability
r(x, t) and spin Si(x, t)-density

ρ(x, t) = �†(x, t)�(x, t), (9)

Si(x, t) = �†(x, t)σi�(x, t). (10)

Since we are interested in the interdot transitions,
with these distributions we find the gross quantities, e.
g., for the right quantum dot:

ωR(t) =
∫ ∞

0
ρ(x, t)dx, (11)

σ i
R(t) =

∫ ∞

0
Si(x, t)dx, (12)

Figure 1 A schematic plot of the double-well potential
described by Equation (1). Double green (red) lines correspond to
the spin-split even (odd) tunneling-determined orbital states.
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where ωR(t) is the probability to find electron and
σ i
R(t) is the analog of expectation value of the spin

component.

Calculations and results
As the electron wavefunction at t = 0 we take linear
combinations of two out of four low-energy states. The

initial state in the form (ψ1(x) ± ψ2(x))| ↑〉
/√

2 is

localized in the left quantum dot, corresponding to the

parameters ξ1(0) = ξ3(0)1
/√

2 .

Two types of electric field were considered as the
external perturbation. The first one is the exactly peri-
odic perturbation for all t > 0:

E(t) = E0 sin (2π t/Tz(Bz)), (13)

Where Tz(Bz) = 2πħ/Δz is the Zeeman period. The
second type is a half-period pulse, same as in Equation
(13), but acting at the time interval 0 <t <Tz (Bz)/2 only.
The spectral width of the pulse covers both the spin
and the tunneling splitting of the ground state, thus,
driving the spin and orbital dynamics simultaneously.
Since Tz(Bz)ω ≫ 1, that is the corresponding frequen-
cies are much less than those for the transitions
between the orbital levels corresponding to a single dot,
the higher-energy states follow the perturbation adiaba-
tically. The field strength ℰ0 is characterized by para-
meter f such that |e|ℰ0 ≡ f × U0/2d. Here we
concentrate on the regime of a relatively weak coupling
(f =≫ 1).
Where the shape of the quartic potential remains

almost intact in time, and the interdot tunneling is still
crucially important. For the magnetic field we consider
two different regimes Δz = ΔEg/2 and Δz = 2ΔEg to illus-
trate the role of the Zeeman field for the entire
dynamics.
We consider a nanostructure with d = 25

√
2 nm and

U0 = 10 meV. The four lowest spin-degenerate energy
levels are E1 = 3.938 meV, E2 = 4.030 meV, E3 =
9.782 meV, E4 = 11.590 meV counted from the bottom
of a single quantum dot with the tunneling splitting ΔEg
= E2 - E1 = 0.092meV, and the corresponding timescale
2πħ/ΔEg = 45ps. The spin-orbit coupling is described by
parameters a = 1.0 · 10-9 eVcm and b = 0.3 · 10-9

eVcm. The field parameter f = 0.125, corresponding to
ℰ0 = 177 V/cm. We use the truncated basis of 20 states
with the energies up to 42 meV.
We begin with the exactly periodic driving force, as

illustrated in Figure 2 where |ξn|
2 for three states are

presented. Since the motion is periodic, here we use the
Floquet method [13,19,20] based on the exact calcula-
tion at the first period and then transformed into the

integer number of periods. Figure 2 demonstrates the
interplay between the tunneling and the spin-flip pro-
cess. The results indicate that the exact matching of the
driving frequency with the Zeeman splitting generates
the spin flip which is clearly visible as the initial spin-up
(ξ1 and ξ3) components are decreasing to zero and, at
the same time, the opposite spin-down components (ξ2
and ξ4) reach their maxima (not shown in the upper
panel). The spin-flip time is approximately 350Tz (Bz)
(or 31 ns) for the weak magnetic field (upper panel) and
24Tz (Bz) (or 528 ps) for the strong field (lower panel).
Such an increase in the Rabi frequency with increasing
magnetic field is consistent with previous theoretical
[3,4] and experimental results [5].
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Figure 2 Motion driven by the exactly periodic field. Upper
panel: Bz = 1.73T, Δz = ΔEg/2 and Tz (Bz) = 90 ps; lower panel: Bz =
6.92T, Δz = 2ΔEg, and Tz(Bz) = 22 ps. The states for ξn(t) are marked
near the plots. The upper panel demonstrates a relatively slow
dynamics on the top of the fast oscillations. The increase in the ξ2(t)
term corresponds to the possible spin-flip due to the external
electric field.
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As the second example we consider the probabilities

ωR(t) and σ i
R(t) for the pulse-driven motion, presented

in Figure 3. As one can see in the figure, the initial
stage is the preparation for the tunneling, which devel-
ops only after the pulse is finished. Electric field of the
pulse induces the higher-frequency motion by involving
higher-energy states, as can be seen in the oscillations at
t ≤ Tz (Bz)/2, however, prohibits the tunneling. Such a
behavior of the probability and spin density can be
explained by taking into account the detailed structure
of matrix elements xnm. Namely, due to the symmetry
of the eigenfunctions in a symmetric double QW the
largest amplitude can be found for the matrix element

of x̂ -operator for the pairs of states with opposite space
parity having the same dominating spin projection.
Hence, the dynamics involving all four lowest levels first
of all triggers the transitions inside these pairs which do
not involve the spin flip and only after this the spin-flip
processes can become significant. As a result, Figure 3
shows that the spin flip has only partial character while
the free tunneling dominates as soon as the pulse is
switched off. A detailed description of other processes
of nonresonant driven dynamics in the case of a half-
period perturbation can be found in ref. [21].

Conclusions
We have studied the full driven quantum spin and
charge dynamics of single electron confined in one-
dimensional double quantum dot with spin-orbit cou-
pling. Equations of motion have been solved in a finite
basis set numerically exactly for a pulsed field and by
the Floquet technique for the periodic fields. We
explored here the regime of relatively weak coupling to
the external field, where a nontrivial dynamics already
occurs. Our results are important for the understanding
of the effects of spin-orbit coupling for nanostructures
as we have demonstrated a possibility to achieve a con-
trollable spin flip at various time scales and in various
regimes by the electrical means only.
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