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Abstract

With the increase in use of nanomaterials, there is growing concern regarding their potential health risks. However,
few studies have assessed the role of the different physical characteristics of nanomaterials in allergic responses.
Here, we examined whether intranasally administered silica particles of various sizes have the capacity to promote
allergic immune responses in mice. We used nanosilica particles with diameters of 30 or 70 nm (nSP30 or nSP70,
respectively), and conventional micro-sized silica particles with diameters of 300 or 1000 nm (nSP300 or mSP1000,
respectively). Mice were intranasally exposed to ovalbumin (OVA) plus each silica particle, and the levels of OVA-
specific antibodies (Abs) in the plasma were determined. Intranasal exposure to OVA plus smaller nanosilica
particles tended to induce a higher level of OVA-specific immunoglobulin (Ig) E, IgG and IgG1 Abs than did
exposure to OVA plus larger silica particles. Splenocytes from mice exposed to OVA plus nSP30 secreted higher
levels of Th2-type cytokines than mice exposed to OVA alone. Taken together, these results indicate that nanosilica
particles can induce allergen-specific Th2-type allergic immune responses in vivo. This study provides the
foundations for the establishment of safe and effective forms of nanosilica particles.

Introduction
With the recent development of nanotechnology, many
nanomaterials with innovative functions have been
developed. For example, nanoparticles of titanium diox-
ide and silica have been used in commercial applications
related to medicine, cosmetics and food [1]. In particu-
lar, amorphous (noncrystalline) nanosilica particles pos-
sess extraordinary advantages, including straightforward
synthesis, relatively low cost, and easy surface modifica-
tion [1,2]. Nanosilica particles are increasingly being
used for many applications, including cosmetics, food
technology, medical diagnosis, cancer therapy, and drug
delivery [1-4].
As the use of nanomaterials increases, there is rising

concern regarding their potential health risks because

there is preliminary evidence that the unique electrical
and mechanical properties of nanomaterials is associated
with undesirable biological interactions [5,6]. In addi-
tion, it has recently become evident that particle charac-
teristics, including particle size and surface properties,
are important factors in pathologic alterations and cellu-
lar responses [7-10]. For instance, Nishimori et al have
previously demonstrated that nanosilica particles with
relatively small particle size induce a greater level of
toxicity, including liver injury, than do silica particles
with larger particle size [11]. To create safe and effective
forms of nanomaterials, studies which provide basic
information regarding biological responses to nanoma-
terials are essential.
Numerous studies have shown that several types of

nanomaterials increase the incidence of allergic immune
diseases [12-14]. Activation of the Th2 response, includ-
ing production of interleukin (IL)-4, IL-5, and IL-13
from Th2 cells (a subset of CD4+ T cells) and immuno-
globulin (Ig) G1 or IgE from B cells, is responsible for
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many of the pathologic features of allergic immune dis-
eases [15]. Some reports have shown that intranasal or air-
way exposure to nanomaterials promotes allergic immune
responses, indicating the immune-activating potential of
nanomaterials [12,13]. However, the role of the different
physical characteristics of nanomaterials in the production
of allergic responses has not been elucidated.
Here, we examined whether intranasal exposure to

nanosilica particles has the capacity to promote allergic
immune responses in mice. In addition, we investigated
the relationship between the size of silica particles and
allergic immune responses.

Materials and methods
Silica particles
Amorphous silica particles with a diameter of 30, 70,
300 and 1,000 nm (Micromod Partikeltechnologie,
Rostock/Warnemünde, Germany, designated nSP30,
nSP70, nSP300 and mSP1000, respectively) were used in
this study. The particle numbers of silica particles were
3.5 × 1013, 2.8 × 1012, 3.5 × 1010, or 9.5 × 108 particles/
mg (nSP30, nSP70, nSP300, or mSP1000, respectively).
Silica particles were sonicated for 5 min and vortexed
for 1 min before use. The size of particles was measured
using a Zetasizer Nano-ZS (Malvern Instruments, UK).
The mean size and the size distribution of particles
were measured by means of dynamic light scattering.
We confirmed that the particle size distributions of
these silica particles were narrow.

Mice
Female BALB/c mice were purchased from Nippon SLC
(Hamamatsu, Japan) and used at 6 to 8 weeks of age.
All of the animal experimental procedures in this study
were performed in accordance with the National Insti-
tute of Biomedical Innovation Guidelines for the Wel-
fare of Animals.
Exposure protocols and detection of antigen-specific

antibody responses by enzyme-linked immunosorbent
assay
Female BALB/c mice were intranasally exposed to a

20 μL aliquot (10 μL per nostril) containing 10 μg of
ovalbumin (OVA; Sigma Chemical Co, St. Louis, MO,
USA) as antigen, plus nSP30, nSP70, nSP300, or
mSP1000 at concentrations of 10, 50 or 250 μg/mouse,
on days 0, 1, and 2. On day 21, plasma was collected to
assess antigen-specific antibody (Ab) responses. Anti-
gen-specific IgG and subclass IgG1 Ab levels were
determined by enzyme-linked immunosorbent assay
(ELISA). The ELISA plates (Maxisorp, type 96F; Nalge
Nunc International, Naperville, IL, USA) were coated
with 10 μg/ml OVA and incubated overnight at 4°C.
Non-specific Ab binding was minimized by incubating
the plates with 4% blocking solution (Block Ace;

Dainippon Sumitomo Pharmaceuticals, Osaka, Japan) at
37°C for 2 h. Plasma dilutions were added to the anti-
gen-coated plates and incubated at 37°C for a further
2 h. The coated plates were then washed with PBS con-
taining 0.05% Tween 20 and incubated with a horserad-
ish peroxidase-conjugated goat anti-mouse IgG solution
(Southern Biotechnology Associates, Birmingham, AL,
USA) at 37°C for 2 h. The color reaction was developed
with tetramethylbenzidine (MOSS, Inc., Pasadena, MD,
USA), stopped with 2N H2SO4, and quantitated by mea-
suring OD450 minus OD655 using a microplate reader.
OVA-specific IgE Ab levels in plasma were determined
using commercial ELISA kits (Dainippon Sumitomo
Pharma, Osaka, Japan).

Isolation of splenocytes
Spleens were aseptically removed and placed in RPMI
1640 medium (Wako Pure Chemical Industries, Osaka,
Japan) supplemented with 10% fetal bovine serum,
50 mM 2-mercaptoethanol and 1% antibiotic cocktail
(Nacalai Tesque, Kyoto, Japan). The single-cell suspen-
sion of splenocytes was treated with ammonium chlor-
ide to lyse the red blood cells, and the splenocytes were
washed, counted, and suspended in RPMI medium
supplemented with 10% fetal bovine serum, 50 mM 2-
mercaptoethanol, 1% antibiotic cocktail, 10 mL/L of
100 × nonessential amino acids solution, 1 mM sodium
pyruvate, and 10 mM HEPES to a final concentration of
1 × 107 cells/mL.

Antigen-specific cytokine responses
Antigen-specific cytokine responses were evaluated by
culturing the splenocytes (5 × 106 cells/well) in the pre-
sence of OVA (1 mg/mL) in vitro. Cells were incubated
at 37°C for 72 h. Culture supernatants from in vitro
unstimulated and OVA-stimulated cells were analyzed
by the Bio-Plex Multiplex Cytokine Assay (Bio-Rad
Laboratories, Hercules, CA, USA) according to the man-
ufacturer’s instructions. The assay results were read on
a Luminex 100 Multiplex Bio-Assay Analyzer (Luminex,
Austin, TX, USA). The difference between the mean
concentration of cytokines in supernatants from in vitro
OVA-stimulated cells and unstimulated cells (back-
ground) was then calculated.

Statistical Analysis
All values are expressed as mean ± SEM. Differences
between groups were assessed using analysis of variance
followed by Turkey’s method.

Results and discussion
Antigen-specific IgE Ab responses to silica particles
To assess the relationship between the size of silica par-
ticles and allergic immune responses, we used nanosilica
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particles with diameters of 30 or 70 nm (nSP30 or
nSP70, respectively), and conventional micro-sized silica
particles with diameters of 300 or 1,000 nm (nSP300 or
mSP1000, respectively). The mean secondary particle
diameters of the silica particles measured by dynamic
laser scatter analysis were 33, 79, 326, and 945 nm,
respectively (data not shown). We examined the silica
particles by transmission electron microscopy, and con-
firmed that they were well-dispersed smooth-surfaced
spheres (data not shown). To investigate the potential of
silica particles to enhance allergic immune responses,
we examined their effect on the production of allergen-
specific Abs responses in vivo. On days 0, 1, and 2, mice
were intranasally exposed to OVA (10 μg/mouse) plus
silica particles at concentrations of 10, 50, and 250 μg/
mouse. On day 21, we collected plasma from the mice
and performed an ELISA to examine anti-OVA IgE Ab
responses. The levels of IgE Abs tended to be higher in
mice exposed to OVA plus smaller nanosilica particles
than in mice exposed to OVA plus larger silica particles
(Figure 1a). In particular, the OVA-specific IgE Ab level
in OVA plus nSP30-exposed mice was significantly
higher than in mice exposed to OVA alone (Figure 1a).
We consider that this level of IgE Ab would induce the

mast cell degranulation and histamine release, which are
major mechanisms underlying anaphylactic reactions in
allergic diseases [16]. In addition, the OVA-specific IgE
Ab response in mice exposed to OVA plus nSP30
increased in an nSP30-dose-dependent manner (Figure
1b). Taken together, these results suggest that nanosilica
particles such as nSP30 are capable of inducing allergic
immune responses and have the potential to cause ser-
ious allergic symptoms.

Antigen-specific IgG Abs subclass responses of silica
particles
Next, to assess the types of immune responses elicited
by silica particles, we measured the levels of anti-OVA
IgG Ab and anti-OVA IgG1 Ab. IgG1 production is
indicative of a Th2-type response. The levels of anti-
OVA IgG and anti-OVA IgG1 Abs induced by intrana-
sal-exposure to OVA plus smaller silica particles were
higher than those induced by OVA plus larger silica
particles (Figure 2); this was similar to the results
observed for IgE Ab responses, described above (Figure
1). The levels of OVA-specific IgG Ab and OVA-specific
IgG1 Ab in mice exposed to OVA plus nSP30 were sig-
nificantly higher than in those exposed to OVA alone

Figure 1 Plasma OVA-specific IgE Ab responses after intranasal exposure to OVA plus silica particles. (a) BALB/c mice were intranasally
exposed to PBS (vehicle control), OVA alone or OVA plus silica particles (250 μg/mouse) on days 0, 1, and 2. (b) BALB/c mice were intranasally
exposed to PBS (vehicle control), OVA alone or OVA plus the designated dose of nSP30 or nSP70 on days 0, 1, and 2. Plasma was collected on
day 21 and analyzed by ELISA to assess (a) the relationship between silica particle size and OVA-specific IgE Ab responses and (b) the dose-
response effect of nSP30 and nSP70 on OVA-specific IgE Ab levels. N.D., not detected. Data are presented as mean ± SEM (n = 8 to 13; *P < 0.05
vs OVA alone).

Yoshida et al. Nanoscale Research Letters 2011, 6:195
http://www.nanoscalereslett.com/content/6/1/195

Page 3 of 6



(Figure 2). These results suggest that nanosilica particles
can induce the production of antigen-specific Ab
responses including antigen-specific Th2 allergic
immune responses.

Antigen-specific cytokine responses of silica particles
To clarify the mechanism by which nSP30 elicited an
immune response, we analyzed the profiles of cytokines
released from splenocytes of OVA-exposed mice. The
splenocytes were cultured in the presence of OVA
in vitro, and the culture supernatants were assessed for
Th2-type cytokines by using a multiplexed immuno-
beads assay. Splenocytes from mice exposed to OVA
plus nSP30 exhibited higher levels of Th2-type cytokines
(IL-4 and IL-5) than those induced with OVA alone
(Figure 3). In contrast, there was hardly any difference
in Th1-type cytokine (IFN-g) production amongst all of
the exposed mice (data not shown). In addition, nSP70,
nSP300, and mSP1000 did not induce cytokine produc-
tion (Figure 3). These results suggest that nSP30 nanosi-
lica particle induces a Th2-type immune response in
this experiment.
It is not clear why nanosilica particles such as nSP30

would induce Th2-polarized allergic immunity. Our
results support previous reports showing that the
immune-activating effect of nanomaterials increases
with decreasing particle size [12,17]. The mechanisms
behind the immune-activating effect of nanomaterials

have not been fully elucidated. Nygaard et al [17]
showed that the higher specific surface area of nanoma-
terials as compared to micro-sized particles allows more
antigen to be adsorbed per particle. We consider that
one possible mechanism by which allergic immune
responses induced by nanosilica particles is that many
antigen-captured nanomaterials might be taken up by
professional antigen presenting cells, such as dendritic
cells. Another possible mechanism is that the nanoma-
terials induce oxidative stress [18,19]. We have observed
that nanosilica particles such as nSP30 are stronger
inducers of oxidative stress than larger silica particles
(unpublished data). Because there is accumulating evi-
dence that oxidative stress plays a role in pro-inflamma-
tory and immune-activating effects [20,21], dendritic
cells might be activated more efficiently by nSP30 than
by larger silica particles. Furthermore, we also observed
that induction of oxidative stress by nanosilica particles
is decreased by surface modification of nanosilica parti-
cles (unpublished data). Therefore, surface modification
might be one approach to decrease allergic immune
responses induced by nanosilica particles.

Conclusion
Here, we show that nanosilica particles have the poten-
tial to induce allergic immune responses after intranasal
exposure. We consider that further studies of the rela-
tionship between the characteristics of nanomaterials

Figure 2 Plasma OVA-specific IgG and subclass IgG1 Ab response after intranasal exposure to OVA plus silica particles. BALB/c mice
were intranasally exposed to PBS (vehicle control), OVA alone or OVA plus silica particles (250 μg/mouse) on days 0, 1, and 2. Plasma was
collected on day 21 and analyzed by ELISA to detect the level of (a) OVA-specific IgG and (b) OVA-specific IgG1 Ab responses. Data represent
mean absorbance at a wavelength of 450 nm (reference wavelength, 655 nm). N.D., not detected. Data are presented as mean ± SEM (n = 5 to
8); *P < 0.05, **P < 0.01 vs OVA alone; ††P < 0.01 vs PBS).
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and allergic immune responses will facilitate the devel-
opment of safe and effective nanomaterials.
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