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Abstract

In this article, a wet chemical method was developed to prepare stable CuO nanofluids. The influences of synthesis
parameters, such as kinds and amounts of copper salts, reaction time, were studied. The thermal conductivities of
CuO nanofluids were also investigated. The results showed that different copper salts resulted in different particle
morphology. The concentration of copper acetate and reaction time affected the size and shape of clusters of
primary nanoparticles. Nanofluids with different microstructures could be obtained by changing the synthesis
parameters. The thermal conductivities of CuO nanofluids increased with the increase of particle loading.

Introduction
Nanofluid is a new class of heat transfer fluids contain-
ing nano-sized particles, fibers, or tubes that are stably
suspended in a carrier liquid [1-4]. Since the concept of
nanofluid was proposed [1], more and more researchers
have been committing to it because of the thermal prop-
erties and the potential applications associated with heat
transfer, mass transfer, wetting, and spreading [1-7].
Preparation of stable nanofluids is the first step and key
issue of nanofluid research and applications. At present,
some methods, such as dispersion method, direct eva-
poration condensation method (DECM), submerged-arc
nanoparticles synthesis system (SANSS), laser ablation
method, and wet chemical method, etc. [2-4,8-12], have
been applied to synthesize nanofluids. Dispersion method
is a two-step method [13-18], in which commercial nano-
particles are dispersed into base fluid under ultrasonic
agitation or mechanical stirring. The advantage of this
method is that it could prepare nanofluids in a large
scale. However, nanoparticle aggregations are difficult to
breakup under ultrasonication or stirring. Thus, stability
and thermal conductivity of nanofluids prepared with
dispersion method are usually not ideal. DECM, SANSS,
and laser ablation method are one-step physical methods
[19-22], in which metal materials are vaporized by physi-
cal technology and cooled into liquids to obtain nano-
fluids. These physical methods provide excellent control
on the particle size and can produce stable nanofluids.
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However, it is difficult to synthesize nanofluids in a large
scale. Our team has developed a wet chemical method
with which several kinds of nanofluids have been pro-
duced successfully [23-25]. It has the advantages in terms
of controlling the particle size, reducing agglomeration of
the nanoparticles, and producing nanofluids in a large
scale. This method is a promising technique for commer-
cial synthesis of nanofluids. However, the research about
the influences of synthesis parameters on nanofluids
microstructure and properties are scarce, though it is
very important for industrial synthesis of nanofluids.

In this study, CuO nanofluid was synthesized with a
wet chemical method. The influences of synthesis para-
meters, such as kinds and amounts of copper salts, reac-
tion time, were studied by X-ray diffraction (XRD),
transmission electron microscopy (TEM), and particle
size analyzer. The thermal conductivity of CuO nano-
fluids was also studied.

Experimental section

All of the reagents used in the experiment were of ana-
lytic purity. Figure 1 shows the preparation process. The
synthesis process is based on the following chemical
reactions in solution:

Cu?* + 2NaOH = Cu(OH), +2Na* (1)

Cu(OH), = CuO + H,0 (2)
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Figure 1 Preparation process of CuO aqueous nanofluids.
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In a typical procedure, 600 ml 0.2 M copper acetate
(Cu(CH3CO0),-H,0) solution and 2 ml glacial acetic
acid (CH3COOH) were added into a round-bottomed
flask and heated to boiling under magnetic stirring.
Then, 30 ml 8 M sodium hydroxide (NaOH) solution
was poured into the flask. The color of the solution
turned from blue to black immediately, and a black sus-
pension formed simultaneously. The reaction was car-
ried out under stirring and boiling for 2 h. The mixture
was cooled to room temperature and centrifuged. Then,
a wet CuO precipitate was obtained. The wet precipitate
was washed twice with distilled water to remove the
impurity ions. CuO nanofluids of different volume frac-
tions were obtained by re-dispersing the wet precipitate
into different amounts of distilled water under ultraso-
nic vibration (120 W, 40 Hz).

To study the influences of synthesis parameters on the
final products, the kinds and amounts of copper salts,
reaction time were changed while keeping all other
experimental parameters same as in the typical run.

The XRD pattern of the powder (obtained by drying
the washed wet precipitate) was recorded on a Rigaku
D/Max r-A diffractometer. TEM images were captured
on a JEM-2000EX instrument. The nanofluids were
diluted with distilled water and dispersed by ultrasonic.
Then, one drop was placed on a carbon-coated copper
grid and left to dry at room temperature. Particle size
distributions of the nanoparticles in nanofluids were
measured with a Zetasizer 3000HS (Malvern) particle
size analyzer. The samples were also prepared by dilut-
ing the nanofluids with distilled water and dispersed by
ultrasonic. Thermal conductivity was measured using a
KD2 Pro Thermal Property Analyzer (Decagon Inc.,
Pullman, WA, USA) based on the transient hot wire
method. The nanofluids were sonicated for about
30 min before measurements so that the samples would
have the same dispersity.

Results and discussion

Characterization of typical sample

Figure 2a is the XRD pattern of the typical sample. All
the peaks on the XRD pattern can be indexed to that of

monoclinic CuO according to the literature (JCPDS,
FileNo 80-1916). The average crystal size is 10.4 nm cal-
culated using Debye-Scherrer formula. Figure 2b shows
a TEM image of the typical sample. The size of primary
particles is about 10 nm, which is in good agreement
with the result of XRD. The primary particles aggregate
to chain-like clusters with width of 10 nm and length of
50-150 nm (5-15 primary particles). Figure 2c is the size
distribution of the typical sample. The particle size is
about 20-80 nm, and the size distribution is narrow.
The larger particle size is due to the short clusters
shown in the TEM image. Figure 2d is the real photo of
the products. The obtained CuO nanofluids could
remain stable for 5 months with no visible precipitation
at the bottom.

Influences of copper salts

By replacing Cu(CH3COQ),-H,O with CuCl,-2H,0 and
Cu(NO3)3-3H,0, respectively, different CuO nanofluids
were prepared with all other experimental parameters
unchanged. Figure 3 is the TEM images of above two
nanofluids. When using CuCl,-2H,0O as copper source
(Figure 3a), the obtained particles in nanofluids are
flake-like particles with width of 10-80 nm and length of
100-300 nm. When using Cu(NO3),-3H,O (Figure 3b),
the particles are aggregations of thin sticks and particles
of about 15-50 nm. It has been approved by some
researchers that the anions could affect the growth
orientation and process of nanoparticles by adsorption
or coordination interaction of anions with special crystal
face of particles [26]. Therefore, by changing copper
source, we could obtain particles with different
morphology.

Influences of copper acetate concentration

Figure 4a,b are the TEM images of CuO nanofluids pre-
pared with copper acetate concentration of 0.1 and
0.4 mol.I"!, respectively. Compared with typical nano-
fluids (obtained with concentration of 0.2 mol1™?), it is
clear that the size of primary nanoparticles remain
almost the same (about 10 nm), but the morphology
and size of nanoparticles cluster change with copper
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Figure 2 Characterization of the typical sample. (a) XRD pattern; (b) TEM image; (c) size distribution; (d) real photo.
.

acetate concentration. When the concentration is and form irregular clusters consisted of 2-30 primary
0.1 mol-1™", the clusters are also chain-like structures nanoparticles. The formation of chain-like cluster may
with lengths in the range of 100-200 nm. It is longer be due to the orientation adhesion mechanism [27].
than the clusters in typical samples. When the concen-  When the concentration of copper acetate is low, the
tration is 0.4 mol-1™, the primary nanoparticles aggregate  collision probability of primary CuO nanoparticles is

Figure 3 TEM images of CuO nanofluids prepared with different copper salts. (a) CuCl,-2H,0; (b) Cu(NO3),:3H,0.
.
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(b) 0.4 molI™.
.

Figure 4 TEM images of CuO nanofluids prepared with different concentrations of (CH;C00),Cu-H,O solution. (a) 0.1 mol-I"";

low; thus, the orientation adhesion is preponderant in
the reaction process. Therefore, by changing the con-
centration of copper acetate, the size and structure of
cluster could be adjusted.

Influence of reaction time

Figure 5 is the TEM images of CuO nanofluids obtained
with different reaction times. When the reaction time is
12 h (Figure 5a), average size of CuO primary nanopar-
ticles is about 10 nm. CuO nanoparticles form flexural
chains consisting of 30-50 primary particles. It is longer
than the chain in typical sample (Figure 2b). When the
reaction time was increased to 25 h (Figure 5b), the size
of the primary particles is also about 10 nm, but the
chain-like clusters do not exist any more. Instead, there
are small aggregates composed of several primary parti-
cles. As mentioned above, the formation mechanism of
chain-like cluster is orientation adhesion. With the
increase of reaction time, the orientation adhesion
degree increases; and thus, the length of the cluster

increases. Why do the chain-like clusters destroy when
the reaction time is 25 h? It needs more detailed
research in future studies. The above results show that
different microstructures could be obtained through
changing the reaction time.

Thermal conductivity of CuO nanofluids

Figure 6 shows the thermal conductivity ratio of the
typical sample, defined as k/ko, where k and ko are the
thermal conductivities of the nanofluids and the base
media (H,O) respectively, as a function of the particle
volume fraction at 25°C. The thermal conductivity of
the base fluid (H,O) was measured, and it had an aver-
age value of 0.580 W.m "-K'. It can be seen that the
thermal conductivity ratio increases as the particle
volume fraction increases. This is in good agreement
with some research, in which the thermal conductivity
of nanofluids also increase linearly with the particle
loading [28,29]. On comparing with some reported
experimental results of CuO nanofluids, the current

Figure 5 TEM images of CuO nanofluids synthesized under different reaction times. (a) 12 h; (b) 25 h.
.
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Figure 6 Thermal conductivity ratio as a function of CuO
volume fraction at 25°C.

data are found to be close to Lee et al.’s data, Das et al.’s
data, and Liu et al.’s data [30-32], suggesting the poten-
tial application as heat transfer fluids.

Conclusion

A wet chemical method to synthesize stable CuO nano-
fluids in a large-scale was developed successfully. The
influences of synthesis parameters on nanofluids micro-
structures were investigated. Different copper salts
resulted in different particle morphologies. The concen-
tration of copper acetate and reaction time affected the
size and shape of clusters of primary nanoparticles.
Nanofluids with different microstructures could be
obtained through changing the synthesis parameters. The
thermal conductivity of CuO nanofluids increased with
the increase of particle loading. It is expected that this
method can be extended to synthesize other nanofluids.
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