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Abstract

The electrical conductivity s has been calculated for p-doped GaAs/Al0.3Ga0.7As and cubic GaN/Al0.3Ga0.7N
thin superlattices (SLs). The calculations are done within a self-consistent approach to the

 
k p⋅ theory by

means of a full six-band Luttinger-Kohn Hamiltonian, together with the Poisson equation in a plane wave
representation, including exchange correlation effects within the local density approximation. It was also
assumed that transport in the SL occurs through extended minibands states for each carrier, and the
conductivity is calculated at zero temperature and in low-field ohmic limits by the quasi-chemical Boltzmann
kinetic equation. It was shown that the particular minibands structure of the p-doped SLs leads to a plateau-
like behavior in the conductivity as a function of the donor concentration and/or the Fermi level energy. In
addition, it is shown that the Coulomb and exchange-correlation effects play an important role in these
systems, since they determine the bending potential.

Introduction
The transport phenomena in semiconductors in the
direction perpendicular to the layers, also known as ver-
tical transport, have been investigated in recent years
from both experimental and theoretical points of view
because of their increased application in the develop-
ment of electro-optical devices, lasers, and photodetec-
tors [1-3]. The theoretical decsription of the electron
transport phenomena in several quantized systems, such
as quantum wells, quantum wires, and superlattices
(SLs), has been given in earlier studies, and it is mainly
based on the solution of the Boltzmann equation [4-6].
The use of SLs is important since increasing the disper-
sion relation of the minibands for carriers is possible
[7]. Therefore, this means that different origins of the
periodic electron/hole potential, which take place in the
compositional SLs and in the SLs formed by selective
doping, can cause different consequences, influencing
the formation of the miniband structures, altering the
electrical conductivity, and affecting the electron scatter-
ing [6]. However, most of those studies treat only n-type

systems, and very little has been reported in the litera-
ture regarding p-type materials, including experimental
results [8-10].
In this study, the behavior of the electrical conductiv-

ity in p-type GaAs/Al0.3Ga0.7As and cubic GaN/
Al0.3Ga0.7N SLs with thin barrier and well layers is stu-

died. A self-consistent
 
k p⋅ method [11-13] is applied,

in the framework of the effective-mass theory, which
solves the full 6 × 6 Luttinger-Kohn (LK) Hamiltonian,
in conjunction with the Poisson equation in a plane
wave representation, including exchange-correlation
effects within the local density approximation (LDA).
The calculations were carried out at zero temperature
and low-field limits, and the collision integral was taken
within the framework of the relaxation time (τ)
approximation.
The III-N semiconductors present both phases: the

stable wurtzite (w) phase, and the cubic (c) phase.
Although most of the progress achieved so far is based
on the wurtzite materials, the metastable c-phase layers
are promising alternatives for similar applications
[14,15]. Controlled p-type doping of the III-N material
layers is of crucial importance for optimizing electronic
properties as well as for transport-based device
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performance. Nevertheless, this has proved to be diffi-
cult by virtue of the deep nature of the acceptors in the
nitrides (around 0.1-0.2 eV above the top of the valence
band in the bulk materials), in contrast with the case of
GaAs-derived heterostructures, in which acceptor levels
are only few meV apart from the band edge [9,11]. One
way to enhance the acceptor doping efficiency, for
example, is the use of SLs which create a two-dimen-
sional hole gas (2DHG) in the well regions of the het-
erostructures. Contrary to the case of wurtzite material
systems, in p-doped cubic structures, a 2DHG may
arise, even in the absence of piezoelectric (PZ) fields
[16]. The emergence of the 2DHG, is the main reason
for the realization of our calculations in cubic phase; the
PZ fields can decrease drastically the dispersion relation
and consequently the conductivity [17,18].
The results obtained in this study constitute the first

attempt to calculate electron conductivity in p-type SLs
in the direction perpendicular to the layers and will be
able to clarify several aspects related to transport
properties.

Theoretical model
The calculations were carried out by solving the 6 × 6 LK
multiband effective mass equation (EME), which is repre-
sented with respect to a basis set of plane waves [11-13].
One assumes an infinite SL of squared wells along <001>
direction. The multiband EME is represented with
respect to plane waves with wavevectors K = (2π/d)l (l
integer, and d the SL period) equal to reciprocal SL vec-
tors. Rows and columns of the 6 × 6 LK Hamiltonian

refer to the Bloch-type eigenfunctions jm kj


of Γ8

heavy and light hole bands, and Γ7 spin-orbit-split-hole

band;

k denotes a vector of the first SL Brillouin zone.

Expanding the EME with respect to plane waves 〈z|K〉
means representing this equation with respect to Bloch

functions
 
r m k Kej z+ ˆ . For a Bloch-type eigenfunc-

tion z Ek


of the SL of energy E and wavevector

k ,

the EME takes the form:
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where T is the effective kinetic energy operator
including strain, VHET is the valence and conduction
band discontinuity potential, which is diagonal with
respect to jmj , j’mj’, VA is the ionized acceptor charge
distribution potential, VH is the Hartree potential due to

the hole- charge distribution, and VXC is the exchange-
correlation potential considered within LDA. The Cou-
lomb potential, given by contributions of VA and VH, is
obtained by means of a self-consistent procedure, where
the Poisson equation stands, in reciprocal space, as pre-
sented in detail in refs. [11,12].
According to the quasi-classical transport theory based

on Boltzmann’s equation with the collision integral
taken within the relaxation time approximation, the
conductivity for vertical transport in SL minibands at
zero temperature and low-field limit can be written as
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where the relaxation time τqv is ascribed to the band
Eq,v , and hh, lh, and so, respectively, denote heavy hole,
light hole and split-off hole. Introducing sq(EF) as the
conductivity contribution of band Eq,v , one can write

 q q v

v

E E( ) ( ),F F= ∑ (3)




q v
q v

q
q vE

e

m
E,

,
* ,( ) ( )F

eff
F=

2

(4)

where




  q v
q

z q v z q v zE
m

dk E k k,

*

, ,( ) ( ( ))( ( ))eff
F F=

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1

2 2 2

2

2


BBZ
∫ (5)

The prime indicates the derivative of εq,v(kz) with
respect to kz . Once the SL miniband structure is
accessed, sq can be calculated, provided that the values
of τq,v are known. The relaxation time for all the mini-
bands is assumed to be the same. In order to describe
qualitatively the origin of the peculiar behavior as a
function of EF , Equation (5) is analyzed with the aid of
the SL band structure scheme as shown in Figure 1. It
is important to see that minibands are presented just for
heavy hole levels, since only they are occupied. Let us
assume that EF moves down through the minibands and
minigaps as shown in the figure. One considers the zero
in the top of the Coulomb barrier. The density

n Eq, ( )
eff

F is zero if EF lies up at the maximum (Max) of

a particular miniband εq,v . Its value rises continuously
as EF spans the interval between the bottom and the top
of this miniband. For EF smaller than the minimum

(Min) of this miniband, n Eq, ( )
eff

F remains constant. A

straightforward analysis of Equation (5) shows that sq

increases as EF crosses a miniband and stays constant as
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EF crosses a minigap. Therefore, a plateau-like behavior
is expected for sq as a function of EF. For a particular
SL of period d, one moves the Fermi level position
down through a minigap by increasing the acceptor-
donor concentration NA, so the same behavior is
expected for sq as a function of NA. This fact was
reported previously for n-type delta doping SLs [4].
In this way, we have the following expression for:
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The parameters used in these calculations are the
same as those used in our previous studies [11-13]. In
the above calculations, 40% for the valence-band offset
and relaxation time τ = 3 ps has been adopted [19].

Results and discussion
Figure 2a shows the conductivity for heavy holes (s as a
function of the two-dimensional acceptor concentration,
N2D, for unstrained GaAs/Al0.3Ga0.7As SLs with barrier
width, d1 = 2 nm, and well width, d2 = 2 nm). The con-
ductivity increases until N2D = 3 × 1012 cm-2 because of
the upward displacement of the Fermi level, which
moves until the first miniband is fully occupied. After-
ward, one observes a small range of concentrations with

Figure 1 Schematic representation of a SL band structure used in this study. Minibands for heavy hole levels, εhh,1 , minigaps, subbands,
and Fermi level, EF, are shown. The zero of energy was considered at the top of the Coulomb potential at the barrier. Horizontal dashed lines
indicate the bottom of the first miniband and the top of the second miniband, respectively.
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a plateau-like behavior for the conductivity; this is a
region where there is no contribution from the first
miniband or where the second band is partially occu-
pied, but its contribution to the conductivity is very
small. In the group-III arsenides, the minigap is shorter
due to the lower values of the effective masses. After NA

= 4 × 1012 cm-2, the conductivity increases again
because of occupation of the second miniband, and this
being very significant in this case. Figure 2b indicates
the Fermi level behavior as a function of N2D, where the
zero of energy is adopted at the top of the Coulomb
barrier, as mentioned before. It is observed that the
Fermi energy decreases as N2D increases. This happens
because of the exchange-correlation effects, which play
an important role in these structures. These effects are
responsible for changes in the bending of the potential
profiles. The bending is repulsive particularly for this

case of GaAs/AlGaAs, and so the Coulomb potential
stands out in relation to the exchange-correlation
potential.
Figure 3a depicts the conductivity behavior of heavy

holes as a function of N2D for unstrained GaN/
Al0.3Ga0.7N SLs with barrier width, d1 = 2 nm, and well
width d2 = 2 nm. In this case, the conductivity increases
until N2D = 2 × 1012 cm-2 and afterward it remains con-
stant, until N2D = 6 × 1012 cm-2. A simple joint analysis
of Figure 3a,b can provide the correct understanding of
this behavior. At the beginning, the first miniband is
only partially occupied; once the band filling increases, i.
e., as the Fermi level goes up to the first miniband
value, the conductivity increases. When the occupation
is complete (N2D = 2 × 1012 cm-2), one reaches a plateau
in the conductivity. After the second miniband begins to
get filled up, s is found to increase again. However, it is

Figure 2 Conductivity behavior for vertical transport in p-type GaAs/Al0.3Ga0.7As SLs with barrier and well widths equal to 2 nm, as a
function of (a) the acceptor concentration N2D and (b) the Fermi energy EF.
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important to note that, for the nitrides, the Fermi level
shows a remarkable increase as N2D increases, a beha-
vior completely different as compared to that of the
arsenides. This can be explained in the following way:
for thinner layers of nitrides, the exchange-correlation
potential effects are stronger than the Coulomb effects,
and so the potential profile is attractive, and it is
expected that the Fermi level goes toward the top of the
valence band, as well as the miniband energies. This has
been discussed in our previous study describing a
detailed investigation about the exchange-correlation
effects in group III-nitrides with short period layers [13].
Comparing both the systems (Figures 2 and 3), one

can observe higher conductivity values for the nitride;
several factors can contribute to this behavior, such as
the many body effects as well as the values of effective
masses, involved in the calculations of the densities

n Eq, ( )
eff

F . Experimental results for p-doped cubic GaN

films, which use the concept of reactive co-doping, have
obtained vertical conductivities as high as 50/Ωcm [8].
Those results corroborate with those of this study, since
in the case of SLs, higher values for the conductivity are
expected. Another interesting point concerning the
arsenides relates to the higher values found for their
conductivity in the case of systems, e.g., n-type delta
doping GaAs system. The reason is the same as that
given earlier.

Conclusions
In conclusion, this investigation shows that the conduc-
tivity behavior for heavy holes as a function of N2D or of
the Fermi level depicts a plateau-like behavior due to
fully occupied levels. A remarkable point refers to the

Figure 3 Conductivity behavior for vertical transport in p-type GaN/Al0.3Ga0.7N SLs with barrier and well widths equal to 2 nm, as a
function of (a) the acceptor concentration N2D and (b) the Fermi energy EF.
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relative importance of the Coulomb and exchange-cor-
relation effects in the total potential profile and, conse-
quently, in the determination of the conductivity. These
results presented here are expected to be treated as a
guide for vertical transport measurements in actual SLs.
Experiments carried out with good quality samples,
combined with the theoretical predictions made in this
study, will provide the way to elucidate the several phy-
sical aspects involved in the fundamental problem of the
conductivity in SLs minibands.
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