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Heat transfer augmentation in nanofluids via
nanofins
Peter Vadasz1,2

Abstract

Theoretical results derived in this article are combined with experimental data to conclude that, while there is no
improvement in the effective thermal conductivity of nanofluids beyond the Maxwell’s effective medium theory
(J.C. Maxwell, Treatise on Electricity and Magnetism, 1891), there is substantial heat transfer augmentation via
nanofins. The latter are formed as attachments on the hot wire surface by yet an unknown mechanism, which
could be related to electrophoresis, but there is no conclusive evidence yet to prove this proposed mechanism.

Introduction
The impressive heat transfer enhancement revealed
experimentally in nanofluid suspensions by Eastman
et al. [1], Lee et al. [2], and Choi et al. [3] conflicts
apparently with Maxwell’s [4] classical theory of estimat-
ing the effective thermal conductivity of suspensions,
including higher-order corrections and other than sphe-
rical particle geometries developed by Hamilton and
Crosser [5], Jeffrey [6], Davis [7], Lu and Lin [8], Bonne-
caze and Brady [9,10]. Further attempts for independent
confirmation of the experimental results showed con-
flicting outcomes with some experiments, such as Das
et al. [11] and Li and Peterson [12], confirming at least
partially the results presented by Eastman et al. [1], Lee
et al. [2], and Choi et al. [3], while others, such as Buon-
giorno and Venerus [13], Buongiorno et al. [14], show in
contrast results that are in agreement with Maxwell’s [4]
effective medium theory. All these experiments were
performed using the Transient-Hot-Wire (THW)
experimental method. On the other hand, most experi-
mental results that used optical methods, such as the
“optical beam deflection” [15], “all-optical thermal len-
sing method” [16], and “forced Rayleigh scattering” [17]
did not reveal any thermal conductivity enhancement
beyond what is predicted by the effective medium the-
ory. A variety of possible reasons for the excessive
values of the effective thermal conductivity obtained in
some experiments have been investigated, but only few

succeeded to show a viable explanation. Jang and Choi
[18] and Prasher et al. [19] show that convection due to
Brownian motion may explain the enhancement of the
effective thermal conductivity. However, if indeed this is
the case then it is difficult to explain why this enhance-
ment of the effective thermal conductivity is selective
and is not obtained in all the nanofluid experiments.
Alternatively, Vadasz et al. [20] showed that hyperbolic
heat conduction also provides a viable explanation for
the latter, although their further research and compari-
son with later-published experimental data presented by
Vadasz and Govender [21] led them to discard this
possibility.
Vadasz [22] derived theoretically a model for the heat

conduction mechanisms of nanofluid suspensions
including the effect of the surface area-to-volume ratio
of the suspended nanoparticles/nanotubes on the heat
transfer. The theoretical model was shown to provide a
viable explanation for the excessive values of the effec-
tive thermal conductivity obtained experimentally [1-3].
The explanation is based on the fact that the THW
experimental method used in all the nanofluid suspen-
sions experiments listed above needs a major correction
factor when applied to non-homogeneous systems. This
time-dependent correction factor is of the same order of
magnitude as the claimed enhancement of the effective
thermal conductivity. However, no direct comparison to
experiments was possible because the authors [1-3] did
not report so far their temperature readings as a func-
tion of time, the base upon which the effective thermal
conductivity is being evaluated. Nevertheless, in their
article, Liu et al. [23] reveal three important new results
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that allow the comparison of Vadasz’s [22] theoretical
model with experiments. The first important new result
presented by Liu et al. [23] is reflected in the fact that
the value of “effective thermal conductivity” revealed
experimentally using the THW method is time depen-
dent. The second new result is that those authors pre-
sent graphically their time-dependent “effective thermal
conductivity” for three specimens and therefore allow
the comparison of their results with the theoretical pre-
dictions of this study showing a very good fit as pre-
sented in this article. The third new result is that their
time dependent “effective thermal conductivity” con-
verges at steady state to values that according to our
calculations confirm the validity of the classical
Maxwell’s theory [4] and its extensions [5-10].
The objective of this article is to provide an explana-

tion that settles the conflict between the apparent
enhancement of the effective thermal conductivity in
some experiments and the lack of enhancement in other
experiments. It is demonstrated that the transient heat
conduction process in nanofluid suspensions produces
results that fit well with the experimental data [23] and
validates Maxwell’s [4] method of estimating the effec-
tive thermal conductivity of suspensions. The theoretical
results derived in this article are combined with experi-
mental data [23] to conclude that, while there is no
improvement in the effective thermal conductivity of
nanofluids beyond the Maxwell’s effective medium the-
ory [4], there is nevertheless substantial heat transfer
augmentation via nanofins. The latter are formed as
attachments on the hot wire surface by a mechanism
that could be related to electrophoresis and therefore
such attachments depend on the electrical current pas-
sing through the wire, and varies therefore amongst dif-
ferent experiments. Also since the effective thermal
conductivity does not increase beyond the Maxwell’s [4]
effective medium theory, the experiments using optical
methods, such as Putnam et al. [15], Rusconi et al. [16]
and Venerus et al. [17], are also consistent with the con-
clusion of this study.
In this article, a contextual notation is introduced to dis-

tinguish between dimensional and dimensionless variables
and parameters. The contextual notation implies that an
asterisk subscript is used to identify dimensional variables
and parameters only when ambiguity may arise when the
asterisk subscript is not used. For example t* is the dimen-
sional time, while t is its corresponding dimensionless
counterpart. However, kf is the effective fluid phase ther-
mal conductivity, a dimensional parameter that appears
without an asterisk subscript without causing ambiguity.

Problem formulation
The theoretical model derived by Vadasz [22] to investi-
gate the transient heat conduction in a fluid containing

suspended solid particles by considering phase-averaged
equations will be presented only briefly without includ-
ing the details that can be obtained from [22]. The
phase-averaged equations are
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where t* is time, Tf (r*,t*), and Ts (r*,t*) are tempera-
ture values for the fluid and solid phases, respectively,
averaged over a representative elementary volume (REV)
that is large enough to be statistically valid but suffi-
ciently small compared to the size of the domain, and
where r* are the coordinates of the centroid of the REV.
In Equations (1) and (2), gs = εrscs and gf = (1 - ε)rfcp
represent the effective heat capacity of the solid and
fluid phases, respectively; with rs and rf are the densities
of the solid and fluid phases, respectively; cs and cp are
the specific heats of the solid and fluid phases, respec-
tively; and ε is the volumetric solid fraction of the sus-
pension. Similarly, kf is the effective thermal
conductivity of the fluid that may be defined in the
form k f kf f= ( , )   , where kf is the thermal conductivity
of the fluid,  =  k ks f/ is the thermal conductivity ratio,
and ε is the solid fraction of suspended particles in the
suspension. In Equations (1) and (2), the parameter h,
carrying units of W m-3 K-1, represents an integral
heat transfer coefficient for the contribution of the heat
conduction at the solid-fluid interface as a volumetric
heat source/sink within an REV. It is assumed to be
independent of time, and its general relationship to
the surface-area-to-volume ratio (specific area) was
derived in [22]. Note that Ts(r*,t*) is a function of
the space variables represented by the position vector

r e e e* = + +
∧ ∧ ∧

x y zx y z* * *
, in addition to its dependence

on time, because Ts(r*,t*) depends on Tf(r*,t*) as expli-
citly stated in Equation (1), although no spatial deriva-
tives appear in Equation (1). There is a lack of
macroscopic level conduction mechanism in Equation (1)
representing the heat transfer within the solid phase
because the solid particles represent the dispersed phase
in the fluid suspension, and therefore the solid particles
can conduct heat between themselves only via the neigh-
bouring fluid. When steady state is accomplished ∂Ts/∂t*
= ∂Tf/∂t* = 0, leading to local thermal equilibrium
between the solid and fluid phases, i.e. Ts(r) = Tf(r).
For the case of a thin hot wire embedded in a cylind-

rical container insulated on its top and bottom one can
assume that the heat is transferred in the radial direc-
tion only, r*, rendering Equation (2) into
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In a homogeneous medium without solid-suspended
particles, Equation (1) is not relevant and the last term in
Equation (3) can also be omitted. The boundary and
initial conditions applicable are an initial ambient con-
stant temperature, TC, within the whole domain, an
ambient constant temperature, TC, at the outer radius of
the container and a constant heat flux, q0, over the fluid-
wire interface that is related to the Joule heating of the
wire in the form q0 = iV/(πdw*l*), where dw* and l* are the
diameter and the length of the wire respectively, i is the
electric current and V is the voltage drop across the wire.
Vadasz [22] showed that the problem formulated by
Equations (1) and (3) subject to appropriate initial and
boundary conditions represents a particular case of Dual-
Phase-Lagging heat conduction (see also [24-28]).
An essential component in the application of the

THW method for estimating experimentally the effective
thermal conductivity of the nanofluid suspension is the
assumption that the nanofluid suspension behaves basi-
cally like a homogeneous material following Fourier law
for the bulk. The THW method is well established as
the most accurate, reliable and robust technique [29] for
evaluating the thermal conductivity of fluids. A very
thin (5-80 μm in diameter) platinum (alternatively tanta-
lum) wire is embedded vertically in the selected fluid
and serves as a heat source as well as a thermometer
(see [22] for details). Because of the very small diameter
and high thermal conductivity of the platinum wire, it
can be regarded as a line heat source in an otherwise
infinite cylindrical medium. The rate of heat generated
per unit length (l*) of platinum wire due to a step

change in voltage is therefore q iV ll* *= W m-1. Sol-

ving for the radial heat conduction due to this line heat
source leads to an approximated temperature solution
in the wire’s neighbourhood in the form
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provided a validity condition for the approximation is

enforced, i.e. t t r* * *>> =0
2 4w  , where rw* is the radius

of the platinum wire,  = k cf f p/ is the fluid’s thermal

diffusivity, and g0 = 0.5772156649 is Euler’s constant.
Equation (4) reveals a linear relationship, on a logarithmic
time scale, between the temperature and time. Therefore,
one way of evaluating the thermal conductivity is from the
slope of this relationship evaluated at r* = rw*. For any two
readings of temperature, T1 and T2, recorded at times t1*

and t2* respectively, the thermal conductivity can be
approximated using Equation (4) in the form:
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Equation (5) is a very accurate way of estimating the
thermal conductivity as long as the validity condition is
fulfilled. The validity condition implies the application
of Equation (5) for long times only. However, when
evaluating this condition to data used in the nanofluid
suspensions experiments, one obtains that t0* ~ 6 ms,
and the time beyond which the solution (5) can be used
reliably is therefore of the order of hundreds of millise-
conds, not so long in the actual practical sense.

Two methods of solution
While the THW method is well established for homoge-
neous fluids, its applicability to two-phase systems such as
fluid suspensions is still under development, and no reliable
validity conditions for the latter exist so far (see Vadasz [30]
for a discussion and initial study on the latter). As a result,
one needs to refer to the two-equation model presented by
Equations (1) and (3), instead of the one Fourier type equa-
tion that is applicable to homogeneous media.
Two methods of solution are in principle available to

solve the system of Equations (1) and (3). The first is
the elimination method while the second is the eigen-
vectors method. By means of the elimination method,
one may eliminate Tf from Equation (1) in the form:

T
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and substitute it into Equation (3) hence rendering the
two Equations (1) and (3), each of which depends on
both Ts and Tf, into separate equations for Ts and Tf,
respectively, in the form:
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where the index i takes the values i = s for the solid
phase and i = f for the fluid phase, and the following
notation was used:
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In Equation (8), τq and τT are the heat flux and tem-
perature-related time lags linked to Dual-Phase-Lagging
[22,24-27,31], while ae is the effective thermal diffusivity
of the suspension. The resulting Equation (7) is identical
for both fluid and solid phases. Vadasz [22] used this
equation in providing the solution. The initial conditions
applicable to the problem at hand are identical for both
phases, i.e. both phases’ temperatures are set to be equal
to the ambient temperature TC

t T T ii* := = = =0 C constant , for s, f (9)

The boundary conditions are
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where r0* is the radius of the cylindrical container.
Equation (7) is second-order in time and second-
order in space. The initial conditions (9) provide one
such condition for each phase while the second-order
Equation (7) requires two such conditions. To obtain
the additional initial conditions, one may use
Equations (1) and (3) in combination with (9). From
(9), it is evident that both phases’ initial temperatures
at t* = 0 are identical and constant. Therefore,

T T T
t tf s C constant( ) = ( ) = == =* *0 0 , leading to
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be substituted in (1) and (3), which in turn leads to
the following additional initial conditions for each
phase:
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The two boundary conditions (10) and (11) are suffi-
cient to uniquely define the problem for the fluid phase;
however, there are no boundary conditions set for the
solid phase as the original Equation (1) for the solid
phase had no spatial derivatives and did not require
boundary conditions. To obtain the corresponding
boundary conditions for the solid phase, which are
required for the solution of Equation (7) corresponding
to i = s, one may use first the fact that at r* = r0* both
phases are exposed to the ambient temperature and
therefore one may set

r r T T* * := =0 s C (13)

Second, one may use Equation (6) and taking its deri-
vative with respect to r* yields
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In Equation (14), the spatial variable r* plays no active
role; it may therefore be regarded as a parameter. As a
result, one may present Equation (14) for any specified
value of r*. Choosing r* = rw* where the value of
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(11), yields from (14) the following ordinary differential
equation:
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At steady state, Equation (15) produces the solution
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where Ts,st is the steady-state solution. The transient
solution Ts,tr = Ts - Ts,st satisfies then the equation:
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which combined with the initial condition (18) pro-
duces the value of the integration constant A = 0 and
therefore the transient solution becomes
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The complete solution for the solid temperature gradi-
ent at the wire is therefore obtained by combining (20)
with (16) leading to
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producing the second boundary condition for the solid
phase, which is identical to the corresponding boundary
condition for the fluid phase. One may therefore con-
clude that the solution to the problem formulated in
terms of Equation (7) that is identical to both phases,
subject to initial conditions (9) and (12) that are identi-
cal to both phases, and boundary conditions (10), (11),
and (13), (21) that are also identical to both phases,
should be also identical to both phases, i.e. Ts (t*,r*) = Tf

(t*,r*). This, however, may not happen because then Tf -
Ts = 0 leads to conflicting results when substituted into
(1) and (3). The result obtained here is identical to
Vadasz [32] who demonstrated that a paradox revealed
by Vadasz [33] can be avoided only by refraining from
using this method of solution. While the paradox is
revealed in the corresponding problem of a porous med-
ium subject to a combination of Dirichlet and insulation
boundary conditions, the latter may be applicable to
fluids suspensions by setting the effective thermal con-
ductivity of the solid phase to be zero. The fact that in
the present case the boundary conditions differ, i.e. a
constant heat flux is applied on one of the boundaries
(such a boundary condition would have eliminated the
paradox in porous media), does not eliminate the para-
dox in fluid suspensions mainly because in the latter
case the steady-state solution is identical for both
phases. In the porous media problem, the constant heat
flux boundary condition leads to different solutions at
steady state, and therefore the solutions for each phase
even during the transient conditions differ.
The elimination method yields the same identical equa-

tion with identical boundary and initial conditions for
both phases apparently leading to the wrong conclusion
that the temperature of both phases should therefore be
the same. A closer inspection shows that the discontinu-
ity occurring on the boundaries’ temperatures at t = 0,
when a “ramp-type” of boundary condition is used, is the
reason behind the occurring problem and the apparent
paradox. The question that still remains is which phase
temperature corresponds to the solution presented by
Vadasz [22]; the fluid or the solid phase temperature?
By applying the eigenvectors method as presented by

Vadasz [32], one may avoid the paradoxical solution and
obtain both phases temperatures. The analytical solution
to the problem using the eigenvectors method is
obtained following the transformation of the equations

into a dimensionless form by introducing the following
dimensionless variables:
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representing a heat flux Fourier number and a tem-
perature Fourier number, respectively. The ratio
between them is identical to the ratio between the time
lags, i.e.
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Equations (1) and (3) expressed in a dimensionless
form using the transformation listed above are
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where Nif is the fluid phase Nield number. The solu-
tions to Equations (25) and (26) are subject to the fol-
lowing initial and boundary conditions obtained from
(9), (10) and (11) transformed in a dimensionless form:

t ii= = =0 0: for s,f (30)

The boundary conditions are

r = =1 0:  f (31)
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No boundary conditions are required for θs. The solu-
tion to the system of Equations (25)-(26) is obtained by
a superposition of steady and transient solutions θi,st(r)
and θi,tr (t,r), respectively, in the form:

  i i it r r t r i, , ,, ,( ) = ( ) + ( ) =st tr for s f (33)

Substituting (33) into (25)-(26) yields to the following
equations for the steady state:
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leading to the following steady solutions which satisfy
the boundary conditions (31) and (32):

 f,st s,st wr r r r( ) = ( ) = − ln (36)

The transient part of the solutions θi,tr (t,r) can be
obtained by using separation of variables leading to the
following form of the complete solution:
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Substituting (37) into (25)-(26) yields, due to the
separation of variables, the following equation for the
unknown functions Ron (r):
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dS

dt
aS aS

dS

dt
cS d S

n
n n

n
n n n

s
s f

f
s f

= −

= +

⎧

⎨
⎪
⎪

⎩
⎪
⎪

(41)

where

a c

d

q q

n
n

= − = − = =
−( )

= −
+( )

=

− −Fh
Fo

Fh
Fo

Ni

Ni Fh

s
1

f

f

f f

1 11

2







; ;

−− −
−( )



n

q

2 1

Fo

(42)

and where the separation constant  n
2 represents the

eigenvalues in space.
Equation (38) is the Bessel equation of order 0 produ-

cing solutions in the form of Bessel functions

R r Y J r J Y rn n n n non     ,( ) = ( ) ( ) − ( ) ( )0 0 0 0 (43)

Where J0(�nr) and Y0(�nr) are the order 0 Bessel func-
tions of the first and second kind, respectively. The
solution (43) satisfies the boundary condition (39) as
can easily be observed by substituting r = 1 in (43).
Imposing the second boundary condition (40) yields a
transcendental equation for the eigenvalues �n in the
form:

J Y r Y J rn n n n0 1 0 1 0   ( ) ( ) − ( ) ( ) =w w (44)

where J1(�nrw) and Y1(�nrw) are the order 1 Bessel
functions of the first and second kind, respectively, eval-
uated at r = rw. The compete solution is obtained by
substituting (43) into (37) and imposing the initial con-
ditions (30) in the form

 i t
n

r r S R r i( ) = − + ( ) ( )= ==
=

∞

∑0
1

0 0w in on  for s fln , (45)

At t = 0, both phases’ temperatures are the same lead-
ing to the conclusion that

S S Sn n nos f0 0( ) = ( ) = (46)

Multiplying (45) by the orthogonal eigenfunction Rom

(�m ,r) with respect to the weight function r and inte-
grating the result over the domain [rw,1], i.e.

( ) ( , )•∫ R r r drom mr


w

  
1

yield

r r rR r dr S rR r R r drom m

r

no on n om m

rn

w

w w

ln , , ,  ( ) = ( ) ( )∫ ∫∑
=

∞1 1

1

(47)

The integral on the right-hand side of (47) produces
the following result due to the orthogonality conditions
for Bessel functions:
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r R r R r dr
n m

N n mon n om m

r
n

 
for

for
w

 


, ,( ) ( ) =
≠

( ) =
⎧
⎨
⎪

⎩⎪∫
1

0
(48)

where the norm N(�n) is evaluated in the form:

N rR r dr
J r J

J r
n on n

r

n w n

n n w

 


 

 
( ) = ( ) =

( ) − ( )⎡
⎣

⎤
⎦∫ 2

1

2

1
2

0
2

2
1
2

2
,

w

(( ) (49)

The integral on the left-hand side of (47) can be eval-
uated using integration by parts and the equation for
the eigenvalues (44) to yield

r rR r dr J Y r Y J ron n

r n
n n w n n wln ,


   ( ) = ( ) ( ) − ( ) ( )⎡⎣ ⎤⎦∫

w

1

2 0 0 0 0
1

(50)

Substituting (48) and (50) into (47) yields the values of
Sin at t = 0, i.e. Sno = Ssn(0) = Sfn(0)

r
J Y r Y J r S N

n
n n n n no n

w
w w

    2 0 0 0 0( ) ( ) − ( ) ( )⎡⎣ ⎤⎦ = ( )

that need to be used as initial conditions for the solu-
tion of system (41)

S
r J r J Y r Y J r

J r
no

n n n n n

n

=
( ) ( ) ( ) − ( ) ( )⎡⎣ ⎤⎦     



2
1
2

0 0 0 0

1
22

w w w w

w(( ) − ( )⎡
⎣

⎤
⎦J n0

2 
(51)

to produce the explicit solutions in time. With the
initial conditions for Sin evaluated (i = s,f), one may turn
to solving system (41) that can be presented in the fol-
lowing vector form:

d

dt
A

S
Sn
n= (52)

where the matrix A is explicitly defined by

A
a a

c dn
=

−
(53)

with the values of a,c and dn given by Equation (42),
and the vector Sn defined in the form Sn = [Ssn,Sfn]

T.
The eigenvalues ln corresponding to (52) are obtained
as the roots of the following quadratic algebraic equa-
tion:

 n n n na d a d c2 0− +( ) + +( ) = (54)

leading to





1
2

2
2

2
1
2

4

2
1
2

4

n
n

n

n
n

n

a d
a d ac

a d
a d ac

= + + −( ) −

= + − −( ) −

and

which upon substituting a,c and dn from Equation
(42) yields


  

 
1

2 2

2 2

1

2
1 1

4

1
n

q n

q

q n

q n

= −
+( )

+ −
+( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Fo

Fo

Fo

Fo
(55)


  

 
2

2 2

2 2

1

2
1 1

4

1
n

q n

q

q n

q n

= −
+( )

− −
+( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Fo

Fo

Fo

Fo
(56)

The following useful relationship is obtained from (55)
and (56):

 


1 2

2

n n
n

q

=
Fo

(57)

The corresponding eigenvectors υ1n and υ2n are evalu-
ated in the form:

v v1
1

1
2

1 1
n n=

− +( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
− +( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 n na

a

a

a

and (58)

leading to the following solution:

S C e C en n
t

n
tn n= +v vn n1 21 2

1 2  (59)

and explicitly following the substitution of (58) and
the initial conditions Sin (i = s,f), at t = 0, i.e. Ssn(0) =
Sfn(0) = Sno with the values of Sno given by Equation (51)

S
S

e en
no

n n
n

t
n

tn n
s =

−( ) −⎡
⎣

⎤
⎦ 

  

2 1
2 1

1 2 (60)

S
S

Fo e Fo efn
no

n n
n q n

t
n q n

tn n=
−( ) +( ) − +( )⎡

 
      

2 1
2 1 1 21 11 2  ⎣⎣

⎤
⎦ (61)

Substituting (57) into (60) and (61) and the latter into
the complete solution (37) yields

   
s w on= − + −⎡

⎣
⎤
⎦ ( )

=

∞

∑r r B e e R rn n
t

n
t

n

n nln 2 1

1

1 2 (62)

     
f w on= − + +( ) − +( )⎡

⎣
⎤
⎦ ( )

=

∞

∑r r B e e R rn n n
t

n n
t

n

n nln 2
2

1
2

1

1 2 (63)

where Bn is

B
S

r J r J Y r Y J r

n
no

n n

n n n n n

=
−( )

=
( ) ( ) ( ) − ( ) ( )

 

     

2 1

2
1
2

0 0 0 0w w w w⎡⎡⎣ ⎤⎦
−( ) ( ) − ( )⎡

⎣
⎤
⎦2 2 1 1

2
0
2   n n n nJ r Jw

(64)
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Comparing the solutions obtained above with the
solution obtained by Vadasz [22] via the elimination
method, one may conclude that the latter corresponds
to the solid phase temperature θs.
The Fourier solution is presented now to compare the

solution obtained from the Dual-Phase-Lagging model
to the former. The Fourier solution is the result
obtained by solving the thermal diffusion equation

1 1


 ∂
∂

= ∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟t r r

r
r

(65)

subject to the boundary and initial conditions

t = =0 0: (66)

r = =1 0:  (67)

r r
r r r

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −
=

w
w

:


1 (68)

where the same scaling as in Equation (22) was
applied in transforming the equation into its dimension-
less form, hence the reason for the coefficient 1/b in the
equation. The Fourier solution for this problem has
then the form [34]

 = − + ( )−

=

∞

∑r r C e R rn
t

n

n
w onln

2

1

(69)

where

C
r J r J Y r Y J r

J r
n

n n n n n

n

=
( ) ( ) ( ) − ( ) ( )⎡⎣ ⎤⎦

(
     



2
1
2

0 0 0 0

1
22

w w w w

w )) − ( )⎡
⎣

⎤
⎦

=
J

S
n

no
0
2 

(70)

and the eigenvalues �n are the solution of the same
transcendental Equation (44) and the eigenfunctions Ron

(r) are also identical to the ones presented in Equation
(43). The relationship between the Fourier coefficient Cn

and the Dual-Phase-Lagging model’s coefficient Bn is

C Bn n n n= −( ) 2 1 (71)

Correction of the THW results
When evaluating the thermal conductivity by applying
the THW method and using Fourier law, one obtains
for the effective thermal conductivity the following rela-
tionship [22]:

k
q r

T t T
r r f tf,app

w C
w w=

( ) −⎡⎣ ⎤⎦
− ( ) + ( )⎡⎣ ⎤⎦

0 0* ln (72)

where the temperature difference [Tw(t) - TC] is repre-
sented by the recorded experimental data, and the value
of the heat flux at the fluid-platinum-wire interface q0 is
evaluated from the Joule heating of the hot wire. In

Equation (72) f t C R r tn nn( ) = ( ) −( )=
∞∑ on w exp  2

1
,

where the coefficient Cn is defined by (70) and the
eigenvalues �n are defined by Equation (44). Note that
the definition of Cn here is different than in [22]. The
results obtained from the application of Equation (72)
fit extremely well the approximation used by the THW
method via Equation (5) within the validity limits of the
approximation (5). Therefore, the THW method is
extremely accurate for homogeneous materials.
On the other hand, for non-homogeneous materials,

by means of the solutions (62) and (63) applicable to
fluid suspensions evaluated at r = rw, one obtains

T T
q r

k
r r g tsw C

f,act
w w s−[ ] = − ( ) + ( )⎡⎣ ⎤⎦

0 0* * ln (73)

T T
q r

k
r r g tfw C

f,act
w w f−[ ] = − ( ) + ( )⎡⎣ ⎤⎦

0 0* * ln (74)

where kf,act is the actual effective thermal conductivity,
Tsw (t) and Tfw (t) are the solid and fluid phases tem-
peratures “felt” by the wire at the points of contact with
each phase, respectively, and the functions gs (t) and gf
(t) obtained from the solutions (62) and (63) evaluated
at r = rw take the form

g t B R r t tn n n n n

n

s on w( ) = ( ) ( ) − ( )⎡⎣ ⎤⎦
=

∞

∑    2 1 1 2

1

exp exp (75)

g t B R r tn n n n

n

n n n

f on w( ) = ( ) +( ) ( )⎡
⎣

− +( )
=

∞

∑   

  

2
2

1

1

1
2

2

exp

exp tt( ) ⎤
⎦

(76)

When the wire is exposed partly to the fluid phase
and partly to the solid phase, there is no justification in
assuming that the wire temperature is uniform: on the
contrary the wire temperature will vary between the
regions exposed to the fluid and solid phases. Assuming
that some solid nanoparticles are in contact with the
wire in a way that they form approximately “solid rings”
around the wire, then the “effective” wire temperature
can be evaluated as electrical resistances in series. By
defining the relative wire area covered by the solid
nanoparticles as as = As/Atot = As/2πrw*l* its corre-
sponding wire area covered by the fluid is af = Af/Atot =
1 - as, then from the relationship between the electrical
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resistance and temperature accounting for electrical
resistances connected in series, one obtains an expres-
sion for the effective wire temperature (i.e. the tempera-
ture that is evaluated using the wire’s lumped electrical
resistance in the THW Wheatstone bridge) Tw in the
form:

T T a T T a T Tw C s sw C s fw C−[ ] = −( ) + −( ) −( )1 (77)

Substituting (73) and (74) into (77) yields

T T
q r

k
r r a g t a g tw C

f,act
w w s s s f−[ ] = − ( ) + ( ) + −( ) ( )⎡⎣ ⎤⎦

0 0 1* * ln (78)

One may then use (78) to evaluate the actual nano-
fluid’s effective thermal conductivity kf,act from (78) in
the form

k
q r

T T
r r a g t a g tf,act

w C
w w s s s f=

−( ) − ( ) + ( ) + −( ) ( )⎡⎣ ⎤⎦
0 0 1* * ln (79)

When using the single phase Fourier solution (72)
applicable for homogeneous materials to evaluate the
effective thermal conductivity of non-homogeneous
materials like nanofluid suspensions instead of using
Equation (79), one obtains a value that differs from the
actual one by a factor of

 = =
− ( ) + ( )⎡⎣ ⎤⎦

− ( ) + ( ) + −( )
k

k

r r f t

r r a g t a g
f,app

f,act

w w

w w s s s

ln

ln 1 ff t( )⎡⎣ ⎤⎦
(80)

where kf,app is the apparent effective thermal conduc-
tivity obtained from the single phase Fourier conduction
solution while kf,act is the actual effective thermal con-
ductivity that corresponds to data that follow a Dual-
Phase-Lagging conduction according to the derivations
presented above. The ratio between the two provides a
correction factor for the deviation of the apparent effec-
tive thermal conductivity from the actual one. This cor-
rection factor when multiplied by the ratio k kf,act f/ 
produces the results for ( / ) /k k k kf,act f f,app f

 = ,
where kf is the thermal conductivity of the base fluid
without the suspended particles, and kf,act is the effective
thermal conductivity evaluated using Maxwell’s [4] the-
ory, which for spherical particles can be expressed in
the form:

k

k
f,act

f
 = +

−( )
+( ) − −( )1
3 1

2 1

 
  

(81)

where kf,act is Maxwell’s effective thermal conductivity,
 =  k ks f is the ratio between the thermal conductivity
of the solid phase and the thermal conductivity of the
base fluid, and ε is the volumetric solid fraction of the
suspension. Then, these results of k kf,app f

 can be

compared with the experimental results presented by
Liu et al. [23].

Results and discussion
The results for the solid and fluid phases’ temperature
at r = rw as a function of time obtained from the solu-
tions (62) and (63) are presented in Figures 1, 2 and 3
in comparison with the single-phase Fourier solution
(69) for three different combinations of values of Foq
and as, and plotted on a logarithmic time scale. While
the quantitative results differ amongst the three fig-
ures, there are some similar qualitative features that
are important to mention. First, it is evident from
these figures that the fluid phase temperature is
almost the same as the temperature obtained from the
single-phase Fourier solution. Second, it is also evi-
dent that the solid phase temperature lags behind the
fluid phase temperature by a substantial difference.
They become closer as steady-state conditions
approach. It is therefore imperative to conclude that
the only way, an excessively higher effective thermal
conductivity of the nanofluid suspension as obtained
by Eastman et al. [1], Lee et al. [2] and Choi et al. [3]
could have been obtained even in an apparent form, is
if the wire was excessively exposed to the solid phase
temperature. The latter could have occurred if the
electric current passing through the wire created elec-
tric fields that activated a possible mechanism of elec-
trophoresis that attracted the suspended nanoparticles
towards the wire. Note that such a mechanism does
not cause agglomeration in the usual sense of the
word, because as soon as the electric field ceases, the
agglomeration does not have to persist and the

Figure 1 Dimensionless wire temperature. Comparison between
the Fourier and Dual-Phase-Lagging solutions for the following
dimensionless parameters values Foq = 1.45 × 10-2 and as = 0.45.
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particles can move freely from the wire’s surface.
Therefore, testing the wire’s surface after such an
experiment for evidence of agglomeration on the
wire ’s surface may not necessarily produce the
required evidence for the latter.
Liu et al. [23] used a very similar THW experimental

method as the one used by Eastman et al. [1], Lee et al.
[2] and Choi et al. [3] with the major distinction being
in the method of producing the nanoparticles and a
cylindrical container of different dimensions. They used
water as the base fluid and Cu nanoparticles as the sus-
pended elements at volumetric solid fractions of 0.1 and
0.2%. Their data that are relevant to the present discus-
sion were digitized from their Figure 3 [23] and used in
the following presentation to compare our theoretical
results. Three specimen data are presented in Figure 3
[23] resulting in extensive overlap of the various curves,
and therefore in some digitizing error which is difficult
to estimate when using only this figure to capture the
data.
The comparison between the theoretical results pre-

sented in this article with the experimental data [23] is
presented in Figures 4, 5 and 6. The separation of these
results into three different figures aims to better distin-
guish between the different curves and avoid overlap-
ping as well as presenting the results on their
appropriate scales. Figure 4 presents the results that are
applicable to specimen No. 4 in Liu et al. [23] and cor-
responding to values of Foq = 1.45 × 10-2 and as = 0.45
in the theoretical model. Evaluating Maxwell’s [4] effec-
tive thermal conductivity for specimen No. 4 leads to a
value of 0.6018 W/mK, which is higher by 0.3% than
that of the base fluid (water), i.e. k kf,act f

 = 1 003. .

From the figure, it is evident that the theoretical results
match very well with the digitized experimental data.
Furthermore, the steady-state result for the ratio
between the effective thermal conductivity and that of
the base fluid was estimated from the digitized data to
be k kf,act f

 = ±1 003 0 001. . clearly validating Maxwell’s
[4] predicted value. The results applicable to specimen
No. 5 in Liu et al. [23] and corresponding to values of
Foq = 1.1 × 10-2 and as = 0.55 in the theoretical model
are presented in Figure 5. The very good match between
the theory and the digitized experimental data is
again evident. In addition, the ratio between the effective

Figure 2 Dimensionless wire temperature. Comparison between
the Fourier and Dual-Phase-Lagging solutions for the following
dimensionless parameters values Foq = 1.1 × 10-2 and as = 0.55.

Figure 3 Dimensionless wire temperature. Comparison between
the Fourier and Dual-Phase-Lagging solutions for the following
dimensionless parameters values Foq = 6 × 10-3 and as = 0.35.

Figure 4 Comparison of the present theory with experimental
data of Liu et al. [23] (here redrawn from published data) of the
effective thermal conductivity ratio for conditions compatible with
specimen No. 4, leading to a Fourier number of Foq = 1.45 × 10-2

and a solid particles to total wire area ratio of as = 0.45.
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thermal conductivity and that of the base fluid was
estimated from the digitized data to be
k kf,act f

 = ±1 004 0 001. . again validating Maxwell’s [4]
predicted value of k kf,act f

 = 1 003. . The last result is
presented in Figure 6, which corresponds to specimen
No. 9 in Liu et al. [23] and to values of Foq = 6 × 10-3

and as = 0.35 in the theoretical model. The results are
presented on an appropriately scaled vertical axis and
show again a very good match between the theory pre-
sented in this article, and the experimental data as digi-
tized from Liu et al. [23]. Since the volumetric solid
fraction for this specimen was 0.2%, its corresponding

Maxwell’s [4] effective thermal conductivity for this spe-
cimen leads to a value of 0.6036 W/mK, which is higher
by 0.6% than that of the base fluid (water), i.e.
k kf,act f

 = 1 006. . The steady-state result for the ratio
between the effective thermal conductivity and that of
the base fluid was estimated from the digitized data to
be k kf,act f

 = ±1 0059 0 002. . validating again Max-
well’s [4] predicted value.
It should be mentioned that Liu et al. [23] explain

their time-dependent effective thermal conductivity by
claiming that it was caused by nanoparticle agglomera-
tion, a conclusion that is consistent with the theoretical
results of this study.

Conclusions
The theoretical results derived in this article combined
with experimental data [23] lead to the conclusion that,
while there is no improvement in the effective thermal
conductivity of nanofluids beyond the Maxwell’s effec-
tive medium theory [4], there is nevertheless the possibi-
lity of substantial heat transfer augmentation via
nanofins. Nanoparticles attaching to the hot wire by a
mechanism that could be related to electrophoresis
depending on the strength of the electrical current pas-
sing through the wire suggests that such attachments
can be deliberately designed and produced on any heat
transfer surface to yield an agglomeration of nanofins
that exchange heat effectively because of the extremely
high heat transfer area as well as the flexibility of such
nanofins to bend in the fluid’s direction when fluid
motion is present, hence extending its applicability to
include a new, and what appears to be a very effective,
type of heat convection. A quantitative estimate of the
effectiveness of nanofins requires, however, an extension
of the model presented in this article to include heat
conduction within the nanofins.
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