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Abstract

In this article, using first-principles electronic structure calculations within the spin density functional theory,
alternated magnetic and non-magnetic layers of rutile-CrO2 and rutile-SnO2 respectively, in a (CrO2)n(SnO2)n
superlattice (SL) configuration, with n being the number of monolayers which are considered equal to 1, 2, ..., 10
are studied. A half-metallic behavior is observed for the (CrO2)n(SnO2)n SLs for all values of n. The ground state is
found to be FM with a magnetic moment of 2 μB per chromium atom, and this result does not depend on the
number of monolayers n. As the FM rutile-CrO2 is unstable at ambient temperature, and known to be stabilized
when on top of SnO2, the authors suggest that (CrO2)n(SnO2)n SLs may be applied to spintronic technologies since
they provide efficient spin-polarized carriers.

Introduction
A variety of heterostructures have been studied for spin-
tronics applications, and they have proved to have a great
potential for high-performance spin-based electronics
[1]. A key requirement in developing most devices based
on spins is that the host material must be ferromagnetic
(FM) above 300 K. In addition, it is necessary to have effi-
cient spin-polarized carriers. One approach to achieve
the spin injection is to create built-up superlattices (SLs)
of alternating magnetic and non-magnetic materials. One
attempt has already been made by Zaoui et al. [2],
through ab initio electronic structure calculations for the
one monolayer (ZnO)1(CuO)1 SL, with the aim of obtain-
ing a half-metallic behavior material, since they are 100%
spin polarized at the Fermi level and therefore appear
ideal for a well-defined carrier spin injection.
In this study, the magnetic and electronic properties

of (CrO2)n(SnO2)n SLs with n = 1, 2, ..., 10 being the
number of monolayers are investigated. These systems
are good candidates to obtain a half-metallic behavior
material since bulk rutile-CrO2 has shown experimen-
tally this behavior [3] and recently magnetic tunnel
junctions based on CrO2/SnO2 epitaxial layers have
been obtained [4].

Theoretical method
All the calculations were based on the spin density func-
tional theory. The Projector-Augmented Wave method
implemented in the Vienna Ab-initio Simulation Package
(VASP-PAW) [5,6] was employed in this study, and for
the exchange-correlation potential, the generalized gradi-
ent approximation and the Perdew, Burke, and Ernzerhof
(GGA-PBE) approach was used [7]. The valence electro-
nic distribution for the PAWs representing the atoms
were Sn– 4d10 5s2 5p2, Cr– 3d5 5s1, and O-2s2 2p4. Scalar
relativistic effects were included. For simulation of the
one monolayer (CrO2)1(SnO2)1 SL, a supercell with 12
atoms (2Sn, 2Cr, and 8O) in the rutile structure as shown
in Figure 1a was used. For this case, a 4 × 4 × 3 mesh of
Monkhorst-Pack k-points was used for integration in the
SL BZ. All the calculations were done with a 490 eV
energy cutoff in the plane-wave expansions.

Results and discussion
For the (CrO2)1(SnO2)1 SL, the calculation was started
with the experimental lattice parameters of the tin diox-
ide, a = 4.737 Å, c/a = 0.673, and u = 0.307 [8-10]. The
system was relaxed until the residual forces on the ions
were less than 10 meV/Å. Good agreement between the
calculated and the available experimental values for the
lattice parameters is obtained, as seen in Table 1. Figure
1b shows that the ground state is ferromagnetic (FM),
being the most stable state compared with the non-mag-
netic (NM) and anti-ferromagnetic (AFM) ones. For the
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ground state, the total magnetic moment gives a value of 2
μB per chromium atom. Figure 2a,b presents the total den-
sity of states (TDOS) and the projected density of states
(PDOS), respectively for the Cr 3d orbital, showing that the
system has a half metallic behavior, with the Cr 3d orbital
appearing in the gap region, characterizing a metallic-like
behavior for the majority spin and a semiconductor-like
behavior for the minority spin. The band structures of the
SL for spin up and spin down are depicted in Figure 2c. A
band gap of approximately 1.71 eV is obtained for the min-
ority spin at the Г-point. There is a smaller gap for spin flip
excitations from the Fermi level, which is approximately
0.86 eV. For the (SnO2)n(CrO2)n SLs with n >1, considered
here up to n = 10, it was observed that the ground state
remains as FM. The interplay of the SnO2 and CrO2 layer
thicknesses does not change the half-metallic behavior, as
can be verified through the DOS shown in Figure 3a,b for
n = 10. The magnetic moment per Cr atom, in all the stu-
died cases, is the same and equal to 2 μB. Moreover, the SL

magnetization does not depend on the number of mono-
layers. This has been verified by performing calculations
with one monolayer of CrO2 grown between 3, 7, and 11
monolayers of SnO2. It was observed that the SL magneti-
zation remained equal to 2 μB. Our results show a 100%
spin polarization at the Fermi level, ideal for a well-defined
carrier spin injection.
An investigation, related to strain effects along the z-

direction for the rutile phase of CrO2, was made by simu-
lating bulk rutile-CrO2, on top of tin dioxide, assuming
for CrO2 the lattice parameter a of SnO2, i.e., a situation
in which the chromium dioxide is tensile. By varying the
ratio c/aSnO2 and minimizing the total energy of the sys-
tem, the authors obtained the curves shown in Figure 4a
for the FM, AFM, and NM states, showing that the tran-
sition from a FM to an AFM state occurs when c/aSnO2 is
about 0.544. At this value, a magnetic moment reduction
is observed, as depicted in Figure 4b. These results sug-
gest a magnetization change when the SL is under strain
or, in other words, when CrO2 is compressed. A similar
behavior was found by Srivastava et al. for bulk rutile-
CrO2 under pressure [11].
The advantage in using the SnO2/CrO2 SLs, despite

the fact that CrO2 is unstable at room temperature, is
that its stability becomes possible when grown on SnO2

[12]. Our results showed that the interface effects due to
the lattice mismatch do not change the chromium diox-
ide magnetism characteristics. If the distances between
two planes perpendicular to the rutile c-axis containing
the Cr2 and Sn1 are compared (see Figure 1a), at the
interface region of the SL, before and after full

Figure 1 The supercell model and total energies for the systems. (a) Supercell used to study the (SnO2)1(CrO2)1 SL, and (b) Total energies
for the non-magnetic (NM) and anti-ferromagnetic (AFM) states relative to the ferromagnetic (FM) state. The dashed lines connecting the points
are to guide the eyes.

Table 1 Experimental and calculated values for the lattice
parameters of the SnO2, CrO2, and of the (CrO2)1(SnO2)1
and (CrO2)10(SnO2)10 SLs in the rutile structure

a (Å) c/a u

SnO2 4.737a 0.673a 0.307a

4.839b 0.670b 0.306b

CrO2 4.421c 0.6596c 0.301c

4.455d 0.6569d 0.304d

(CrO2)1(SnO2)1 4.625d 0.658d -

(CrO2)10(SnO2)10 4.640d 6.546d -

a[8]; b[9]; c[10]; dthis work.

Borges et al. Nanoscale Research Letters 2011, 6:146
http://www.nanoscalereslett.com/content/6/1/146

Page 2 of 5



-6 -5 -4 -3 -2 -1 0 1 2 3 4 5
-14

-7

0

7

14

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5
-6

-3

0

3

6

Energy (eV)

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5

En
er

gy
 (e

V)

X

up down

M Z X M Z

EF

TD
O

S
EF

majority spin

minority spin

(c)

(b)

PD
O

S

Energy (eV)

(a)
majority spin

minority spin

Figure 2 Density of states and band structure for the (SnO2)1(CrO2)1 SL. (a) Total density of states (TDOS), (b) Project density of states
(PDOS) for the Cr-d orbital, (c) Band structure, for spin up and spin down, along the main symmetry lines of the SL BZ. The Fermi level, EF, is set
to zero in (a), (b), and (c).
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Figure 3 Density of states and total energies for the SL with n=10. (a) Total density of states (in black) and project density of states (in
gray) for the Cr–3d. (b) Total energies for the non magnetic (NM) and anti-ferromagnetic (AFM) states relative to the ferromagnetic (FM) state.
The Fermi level, EF, is set to zero. The dashed lines connecting the points are to guide the eyes.
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relaxations, then changes of only approximately 4% are
observed for all the studied SLs.

Conclusions
In conclusion, the results of first-principles electronic
structure calculations, within the spin density functional
theory, carried out for (CrO2)n(SnO2)n SLs formed by
alternating magnetic and non-magnetic layers of rutile-
CrO2 and rutile-SnO2, where the number of monolayers n
was varied from 1 to 10, have been reported in this article.
A half-metallic behavior is observed for all the studied
(CrO2)n(SnO2)n SLs. The ground state is FM, with a mag-
netic moment of 2 μB per chromium atom, which is inde-
pendent of the number of monolayers. As the FM rutile-
CrO2 is unstable at ambient temperature, and known to
be stabilized when on top of SnO2, it is suggested that
(CrO2)n(SnO2)n SLs may be applied to spintronic technol-
ogies since they provide efficient spin-polarized carriers.
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