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Abstract

A delta-doped quantum well with additional modulation doping may have potential applications. Utilizing such a
hybrid system, it is possible to experimentally realize an extremely high two-dimensional electron gas (2DEG)
density without suffering inter-electronic-subband scattering. In this article, the authors report on transport
measurements on a delta-doped quantum well system with extra modulation doping. We have observed a 0-10
direct insulator-quantum Hall (I-QH) transition where the numbers 0 and 10 correspond to the insulator and
Landau level filling factor ν = 10 QH state, respectively. In situ titled-magnetic field measurements reveal that the
observed direct I-QH transition depends on the magnetic component perpendicular to the quantum well, and the
electron system within this structure is 2D in nature. Furthermore, transport measurements on the 2DEG of this
study show that carrier density, resistance and mobility are approximately temperature (T)-independent over a wide
range of T. Such results could be an advantage for applications in T-insensitive devices.

Introduction
Advances in growth technology have made it possible to
introduce dopants which are confined in a single atomic
layer [1]. Such a technique, termed delta-doping, can be
used to prepare structures which are of great potential
applications. For example, many novel structures based
on delta-doped structures [2-10] can be experimentally
realized using very simple fabrication techniques. It is
found that delta-doped quantum wells may suffer from
surface depletion and carrier freeze-out, which compro-
mise their performances, thereby limiting their potential
applications. To this end, a delta-doped quantum well
with additional modulation doping can be useful. The
modulation doping provides extra electrons so as to
avoid carrier freeze-out. On the other hand, it preserves
the advantages of a delta-doped quantum well structure,
such as an appreciable radiative recombination rate
between the two-dimensional electron gas (2DEG) and
the photo-generated holes [9], and an extremely high
2DEG density, suitable for high-power field effect

transistor [8]. It is worth mentioning that doped quan-
tum wells with additional modulation doping [11-16]
have already been used to study the insulator-quantum
Hall (I-QH) transition [17-23], a very fundamental issue
in the fields of phase transition and Landau quantiza-
tion. In order to fully realize its potential as a building
block of future devices, it is highly desirable to obtain
thorough understanding of the basic properties of a
delta-doped quantum well with additional modulation
doping. In this article, extensive resistance measure-
ments on such a structure are described. At low tem-
peratures (0.3 K ≤ T ≤ 4.2 K), the authors have observed
a low-field direct I-QH transition. In situ tilted-field
experiments demonstrate that the observed direct I-QH
transition only depends on the magnetic field compo-
nent applied perpendicular to the quantum well, and
thus the electron system within our device is 2D in nat-
ure. Resistivity, carrier density, and hence mobility of
the device developed are all weakly temperature depen-
dent. These results may be useful for simplifying circui-
try design for low-temperature amplifiers, and devices
for space technology and satellite communications since
extensive, costly and time-consuming tests both at room
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temperature and at low temperatures may not be
required.

Experimental details
The sample that we used in these experiments was
grown by molecular beam epitaxy (MBE). The layer
sequence was grown on a semi-insulating (SI) GaAs
(100) substrate as follows: 500 nm GaAs, 80 nm
Al0.33Ga0.67As, 5 nm GaAs, Si delta-doping with a den-
sity of 5 × 1011 cm-2, 15 nm GaAs, 20 nm undoped
Al0.33Ga0.67As, 40 nm Al0.33Ga0.67As layer with a Si-dop-
ing density of 1018 cm-3, and 10 nm GaAs cap layer. It
is found that electrical contacts to a delta-doped quan-
tum well with the same doping concentration do not
show Ohmic behaviour at T < 30 K. Therefore, addi-
tional modulation doping is introduced in order to pro-
vide extra carriers so as to avoid this unwanted effect.
As shown later, the carrier density of the 2DEG is
indeed higher than the delta-doping concentration.
Moreover, the electrical contacts to the 2DEG all show
Ohmic behaviour over the whole temperature range (0.3
K ≤ T ≤ 290 K). Both results demonstrate the usefulness
of additional modulation doping. The sample was pro-
cessed into a Hall bar geometry using standard optical
lithography. The sample studied in this study is different
from that reported in Ref. [14] but was cut from the
same wafer. Low-temperature magnetotransport mea-
surements were performed in a He3 cryostat equipped
with an in situ rotating insert. Transport measurements
over a wide range of temperature were performed in a
closed-cycle system equipped with a water-cooled elec-
tric magnet.

Results
In the system developed in this study, ionized Si dopants
confined in a layer of nanoscale can serve as nano-
scatterers close to the 2DEG. Figure 1a shows longi-
tudinal and Hall resistivity measurements at various
temperatures when the magnetic field is applied perpen-
dicular to the plane of the 2DEG. Minima in rxx corre-
sponding to Landau level filling factors ν = 8, 6 and 4
are observed. On the other hand, rxy is linear at around
ν = 8 and 6, and shows only a step-like structure, not a
quantized Hall plateau at around ν = 4. We can see that
at the crossing field Bc, approximately 2.4 T, where the
corresponding filling factor is about 10, rxx is approxi-
mately T-independent. Near the crossing field, rxx is
close to rxy. Therefore, we observe a low-field direct
I-QH transition, consistent with existing theory and
experimental results [13-16,18-22]. In order to further
study this effect, the sample was tilted in situ so that

Figure 1 Four-terminal magnetoresistance measurements:(a)
Longitudinal resistivity rxx measurements as a function of magnetic
field rxx(B) at various temperatures. Hall resistivity rxy as a function
of B at T = 1.9 K is shown. (b) Longitudinal resistivity measurements
as a function of total magnetic field rxx(Btot) at various
temperatures. (c) Longitudinal resistivity measurements as a
function of the perpendicular component of the applied magnetic
fieldrxx(Bperp) at various temperatures.
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the angle between the applied B and growth direction is
28.5°. Figure 1b shows rxx and rxy as a function of total
magnetic field which is applied perpendicular to the
2DEG plane at various temperatures. The ν = 4 QH-like
state is now shifted to a higher field of B approximately,
7 T. Similarly, the crossing field is shifted to a higher
field of approximately, 2.9 T. The authors now re-plot
the data as a function of perpendicular component of
the total magnetic field, as shown in Figure 1c. It can be
seen that both crossing field and the minimum in rxx
corresponding to the ν = 4 QH-like state are now the
same as those shown in Figure 1a. The results therefore
demonstrate that the electron system are indeed 2D in
nature since all the features only depend on the B com-
ponent perpendicular to the growth direction. Further-
more, the corresponding approximately T-independent
point in rxx at the crossing field is the same, despite an
in-plane magnetic field of approximately 1.4 T being
introduced in our tilted-field measurements.
As mentioned earlier, it is highly desirable to obtain

a thorough understanding of the basic properties of
our system so as to fully realize its potential in electro-
nic and optoelectronic devices. Figure 2a shows resis-
tivity measurements as a function of T over a wide
range of temperature. Interestingly, rxx is almost T-
independent from room temperature down to 23 K.
To understand why rxx at B = 0 is insensitive to the
temperature, the T-dependence of n is investigated,
and μ is obtained using rxx = 1/neμ at zero magnetic
field, as shown in Figure 2b, c. The carrier concentra-
tion does not decrease too much, and thus the 2DEG
does not suffer from the carrier freeze-out at low tem-
peratures because of the extra modulation doping.
While μ increases with decreasing T in most 2DEG
because of the reduced electron-phonon scattering, it
can bee seen from Figure 2c that μ saturates and
remains at approximately 0.37 m2/v/s from T = 230 K.
For a 2DEG in the delta-doped quantum well, with
decreasing T, it shall be considered that the enhance-
ment of the multiple scattering may decrease the
mobility and thus compensate the reduced electron-
phonon scattering effect [6,7]. Therefore, we can
design the devices insensitive to T by using the delta-
doped quantum well with the extra modulation doping.
For example, when designing a circuit for a low-
temperature amplifier, such as the one used for space
technology and satellite communications, one needs to
perform a test at room temperature (RT) first. When
cooling down the amplifier, its characteristics can be
significantly different since the resistance of the device
based on HEMT structure may be a lot lower than
that at RT [24]. Therefore substantial variation in
the circuitry design based on the RT test is required.
Since the rxx, n and μ of our structure are almost

T-independent over a wide range of temperature, a RT
test may be sufficient.
Both the strong and weak localization effects can com-

pensate the reduced electron-phonon effect with
decreasing T. To clarify the dominant mechanism lead-
ing to the compensation in this study, it is noted that
the direct I-QH transition inconsistent with the global

Figure 2 Electrical measurements over a wide range of
temperature:(a) Resistivity as a function of temperature rxx(T), (b)
carrier density as a function of temperature n(T), and (c) mobility as
a function of temperature μ(T).
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phase diagram of the quantum Hall effect reveals the
absence of the strong localization [17,18]. The magneto-
oscillations following the semiclassical Shubnilkov-de
Haas formula when B < 6T also indicates that the
strong localization is not significant near B = 0 [14,23].
Therefore, the weak localization effect should be respon-
sible for the enhancement of the multiple scattering,
compensating for the reduced electron-phonon effect
[25].

Conclusions
In summary, electrical measurements of a delta-doped
single quantum well with additional modulation doping
have been presented. A direct I-QH transition in such a
structure has been observed. In situ tilted-field measure-
ments demonstrate that the observed 0-10 transition
only depends on the magnetic field component applied
perpendicular to the quantum well, and therefore the
electron system within the sample studied is 2D in nat-
ure. Neither carrier freezeout nor second electronic sub-
band at a high density of 6.5 × 1015 m-2 is observed in
the system proposed. Transport measurements over a
wide range of temperature reveal that rxx, n and μ all
show very weak T dependencies. These results could be
useful for devices which can maintain their characteris-
tics over a wide range of temperature. Our results could
also be useful for circuit design for low-temperature
amplification, and devices for space technology and
satellite communications.

Abbreviations
2DEG: two-dimensional electron gas; I-QH: insulator-quantum Hall; MBE:
molecular beam epitaxy; RT: room temperature; SI: semi-insulating; T:
temperature.
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