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Abstract

The effects of near-surface processing on the properties of AlGaN/GaN heterostructures were studied, combining
conventional electrical characterization on high-electron mobility transistors (HEMTs), with advanced
characterization techniques with nanometer scale resolution, i.e., transmission electron microscopy, atomic force
microscopy (AFM) and conductive atomic force microscopy (C-AFM). In particular, a CHF3-based plasma process in
the gate region resulted in a shift of the threshold voltage in HEMT devices towards less negative values. Two-
dimensional current maps acquired by C-AFM on the sample surface allowed us to monitor the local electrical
modifications induced by the plasma fluorine incorporated in the material.
The results are compared with a recently introduced gate control processing: the local rapid thermal oxidation
process of the AlGaN layer. By this process, a controlled thin oxide layer on surface of AlGaN can be reliably
introduced while the resistance of the layer below increase locally.

Introduction
Gallium nitride (GaN)-based heterostructures are pro-
mising materials for the fabrication of high-frequency
and high-power devices. In particular, the presence of
spontaneous and piezoelectric polarization charges in
AlGaN/GaN layers leads to the appearance of a two
dimensional electron gas (2DEG) at the AlGaN/GaN
interface, typically having sheet carrier densities ns
approximately 1 × 1013 cm-2 and high mobility (1,000-
1,500 cm2/V s) [1]. These properties make the materials
suitable for the fabrication of transistors based on the
2DEG operating at high frequencies (up to tens of giga-
hertz), i.e., high-electron mobility transistors (HEMTs).
In Figure 1a, a schematic of a typical HEMT device is

reported, in which the location of the 2DEG at the
interface between GaN and the AlGaN barrier layer is
reported. The current flow between the source and
drain Ohmic contacts is controlled modulating the
2DEG carrier concentration in the channel region
through the bias applied to the gate Schottky contact on
the AlGaN barrier layer.

To date, for many applications, conventional AlGaN/
GaN HEMTs have been fabricated as “depletion mode”
transistors, i.e., these have a negative threshold voltage
(Vth) [2]. However, the next generation of devices will
require a more efficient use of the electric power.
Hence, enhanced mode (normally-off) AlGaN/GaN
HEMTs have become more desirable because these offer
simplified circuitry (eliminating the negative power sup-
ply), in combination with favourable operating condi-
tions for device safety.
Achieving reliable normally-off operation in AlGaN/

GaN HEMTs is a challenging goal of current GaN tech-
nology. Several solutions, mostly involving nanoscale
local modifications of the AlGaN barrier layer (e.g.,
recessed gate process [3], fluorine-based plasma etch [4],
surface oxidation [5], etc.) have been recently proposed.
Clearly, the transport properties of the 2DEG at AlGaN/
GaN interfaces are strongly affected by those processes.
In this context, using advanced nanoscale-resolution
characterization methods can be the optimal way to
monitor these local changes and to fully assess the basic
transport phenomena in AlGaN/GaN heterostructures,
in order to ultimately achieve reliable devices.
The accurate control of the threshold voltage (Vth) is a

key issue for normally-off HEMTs fabrication. In fact,
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several physical parameters affect the value of the
threshold voltage Vth [6], like the Schottky metal/semi-
conductor barrier height (FB), the thickness of the
AlGaN barrier layer (d), the residual doping concentra-
tion in the AlGaN (ND), the polarization charge at the
AlGaN/GaN interface (s) or the concentration of
charges intentionally introduced in the AlGaN barrier
(NF).
The introduction of negative charges in the near-sur-

face region of the AlGaN barrier can be a possible
method to monitor the carrier sheet concentration of
the 2DEG and, hence, the value of Vth. Based on this
idea, Cai et al. [4] demonstrated the possibility to shift
the threshold voltage of AlGaN/GaN HEMTs to positive
values by introducing fluorine ions by means of a reac-
tive ion etching plasma process in CF4. However, this
process introduces a large amount of defects in the
AlGaN barrier layer, which can lead to a degradation of
the 2DEG mobility. Hence, an annealing process, after
the gate fabrication, is needed to repair the damage and
recover the mobility. The use of other plasma techni-
ques, like inductive coupled plasma (ICP), could be also
considered to reduce the damage and better control the
parameters defining the normally-off operation (thresh-
old voltage and sheet carrier concentration of the
2DEG).
A reduction of the barrier thickness d leads also to a

positive shift of Vth, as reported in the conventional
approach of the recessed gate [2]. Typically, recessed gate
structures are formed by selective plasma etchings [7].

However, etching just a few nanometers can be extremely
difficult particularly considering a high reproducibility
and wafer uniformity. Alternatively, Chang et al. [8]
reported, in the case of AlN/GaN heterostructures, that a
near surface oxidation process can be useful to convert
into Aluminum oxide a surface-layer of AlN and, then, to
reduce the thickness of the barrier layer below the critical
thickness.
Other experiments investigated the effects of a thin

oxide layer on the surface of AlGaN using a plasma
treatment in O2 or in N2O [5]. In this context, the
effects of a rapid thermal oxidation on the surface were
not addressed yet.
In this context, this work studies the effects of near-

surface processing on the properties of AlGaN/GaN het-
erostructures, combining conventional electrical analyses
of HEMTs with advanced nanoscale characterization
techniques as transmission electron microscopy (TEM),
atomic force microscopy (AFM) and conductive atomic
force microscopy (C-AFM). In particular, nanoscale cur-
rent measurements demonstrated a local reduction of
the leakage currents (i.e., an increasing of the resistance
of the material) both using a CHF3 plasma or rapid oxi-
dation treatments of the surface. Hence, these processes
could find interesting applications in the fabrication of
innovative GaN-based transistors.

Experimental
AlGaN/GaN heterostructures grown on different sub-
strates (SiC, Si, Al2O3) were used in our experiments. In

Figure 1 Schematic representations. Schematic representations of an untreated HEMT device (a) and of a HEMT subjected to CHF3 plasma
processing (b). IDS-VDS characteristics of HEMT device not subjected to the plasma treatment (squares) and subjected to the plasma treatment
and to an annealing (triangles).
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order to determine the physical properties of the 2DEG,
HEMTs devices with an appropriate geometry were fab-
ricated. First, reference HEMT devices (i.e., not sub-
jected to the plasma treatment) were fabricated. Source
and drain Ohmic contacts were formed by an annealed
Ti/Al/Ni/Au multilayer [9] and the gate Schottky con-
tact was subsequently formed by a Pt/Au bilayer [9]. To
study the effect of the plasma treatment on the 2DEG
transport properties, the region where the gate electrode
had to be fabricated was modified (before metal deposi-
tion) with a plasma process using a CHF3/Ar gas mix-
ture, as schematically illustrated in Figure 1b. The
plasma treatment was performed at room temperature
using the Roth & Rau Microsys 400 ICP equipment.
The CHF3/Ar gas flux was 20 sscm and the operating
pressure in the chamber was 5 × 10-2 mbar. The control
bias, the power, and the process duration were 200 V,
250 W and 300 s, respectively. Afterwards, the Pt/Au
gate electrode was formed on the same region subjected
to plasma treatment, using a self-aligned process and
lift-off technique for metal definition. Finally, the sample
was subjected to an annealing process at 400°C, in order
to recover the damage induced by the plasma process. It
is worth noting that this annealing process does not
cause degradation of the gate Schottky contact.
In order to characterize the physical properties of

the 2DEG, both macroscopic and nanoscale electro-
structural analysis of the near-surface region of the sam-
ples were performed. First, current-voltage (I-V) and capa-
citance-voltage (C-V) measurements of HEMT devices
were performed in a Karl Süss probe station, equipped
with a parameter analyzer. These macroscopic electrical
measurements gave information on the current flowing in
the 2DEG, allowing also to determine the threshold vol-
tage and the sheet carrier density in the 2DEG. Then,
TEM analysis was used to monitor the heterojunction
microstructure and the crystalline defects. AFM and
C-AFM were used to study the sample morphology
as well as the local electrical behaviour of the modified
surface region.
Finally, a preliminary investigation on the effect of a

near-surface oxidation process was performed. For this
aim, a rapid thermal oxidation (RTO) at 900°C for
10 min was carried out in a Jipelec JetFirst furnace. The
nanoscale electro-structural properties of the oxidized
region were characterized by means of TEM, AFM and
C-AFM.

Results and discussion
Figure 1c shows the IDS-VGS characteristics for different
gate biases VGS, in the case of a reference untreated (as
prepared) HEMT device (squares) and for a device sub-
jected to a CHF3 plasma treatment (circles). For the
untreated device a saturation current of 2.2 mA is

reached at a gate bias VGS = 0, while at the same gate
voltage (VGS = 0) the saturation current decreases to
0.15 mA in the CHF3-treated device. It is worth noting
that a positive gate bias of +2 V must be applied to the
HEMT subjected to CHF3 treatment to achieve a satura-
tion current value of 2.4 mA, comparable with that in
the untreated device at VGS = 0 V. Furthermore, the
gate bias necessary to reduce IDS to a value of 10 nA
changes from -2 to -0.5 V, from the untreated to the
plasma-treated device. Finally, for a fixed gate bias of -2
V the leakage current decreases from 10 to 0.5 nA, after
the plasma treatment.
Figure 2a reports the C-VGS curves acquired in the

same devices between the gate Schottky contact and the
source electrode. A shift towards less negative values on
the bias axis is visible for the C-VGS curve on the
plasma-treated sample. The sheet carrier concentration
ns can be also evaluated by integrating the C-VGS

curves, as described in detail in reference [1]. The ns-
VGS curves for the untreated and CHF3-treated samples
are reported in Figure 2b. For a gate bias of 0 V, a
decrease of ns from 5 × 1012 cm-2 in the as-prepared
sample to 2 × 1012 cm-2 after the plasma treatment was
found. For VGS = +2 V, ns reaches a value of 7 × 1012

cm-2, for the plasma-treated sample. From the ns-VGS

curves in Figure 2(b), it was also possible to extract a
precise value of the threshold voltage. We found a Vth =
-1.92 V for the as prepared device and Vth = -0.8 V for
the processed device.
Moreover, from the values of source-gate current IGS

(not showed) we observed a decrease of the current of
leakage for the plasma-treated device under reverse bias.
In particular, at VGS = -10 V the leakage current was
reduced from 100 to 10 nA. The decrease in the reverse
leakage current was also accompanied by a reduced for-
ward current (i.e., from 10 to 4 mA at VGS = +3 V),
most probably due to an increase of the series resis-
tance. The decreasing of the leakage current can be due
to several reasons: (1) an increase of the Schottky bar-
rier height, (2) the depletion of the 2DEG channel, and
(3) an increase in the resistivity in the upper shallow
AlGaN layer due to lattice damage.
Figure 3 shows cross-section TEM micrographs of our

AlGaN/GaN heterostructure taken in the proximity of
the gate of the HEMT device subjected to the plasma
process. The dark contrast in the AlGaN region under-
neath the Pt gate contact can be associated to a consid-
erable amount of crystalline imperfections (defects).
This defect-rich interface region could be highly resis-
tive and could affect the leakage current behaviour.
Indeed also Chu et al. [10] suggested that the fluorine
plasma can react with GaN (or AlGaN) to form non
volatile F-containing compounds, leading to the creation
of an insulating surface that blocks the leakage current.
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Figure 2 Capacitance and sheet carrier density versus gate bias. Capacitance versus gate bias (C-VGS) (a) and sheet carrier density versus
gate bias (ns-VGS) (b) measured on the untreated (squares) and plasma treated (triangles) devices.

Figure 3 TEM analysis of the heterojunction AlGaN/GaN after CHF3 plasma process. A defect-rich region near the surface is visible.
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In order to monitor the local electrical modification
induced by the plasma treatment on the 2DEG, and cor-
roborate the previous hypothesis, a nanoscale characteri-
zation approach was adopted. For this purpose C-AFM
scans were performed on appropriate samples, in which
the plasma treatments were performed in selected
regions. In particular, resist stripes were defined on the
sample surface by means of optical lithography, in order
to selectively expose the sample surface to CHF3 pro-
cess. The transversal current between the nanometric
tip contact and the sample backside was measured by a
high sensitivity current sensor in series with the tip, as
illustrated in Figure 4a.

Figure 4b reports the AFM morphological image of the
sample. As can be seen, no substantial difference can be
observed between stripes processed with CH3 plasma and
stripes without any treatment. On the other hand, a sig-
nificant difference can seen by the transversal current
map acquired by C-AFM and shown in Figure 4c. This
picture clearly shows the electrical changes of the
material due to the plasma treatment. The local current
is significantly reduced (two orders of magnitude) on the
stripes processed with plasma, with respect to the ones
without plasma treatment. This behaviour is consistent
with an increased local resistance in the plasma-etched
regions, which in turn can be associated whether to a

Figure 4 C-AFM scans. Schematic of the C-AFM measurement setup (a) used to measure conductivity changes in a sample locally treated with
CHF3 plasma (on lithographically defined stripes) and annealed at 400°C. AFM morphology (b) and C-AFM transversal current map (c) of the
sample.

Greco et al. Nanoscale Research Letters 2011, 6:132
http://www.nanoscalereslett.com/content/6/1/132

Page 5 of 7



partial depletion of the 2DEG channel or more simply to
an increase of the local resistance of the AlGaN barrier
layer due to plasma-induced damage.
The experimental results found from the macroscopic

I-V characteristic of the devices and the nanoscale elec-
tro-structural analysis of the near-surface region suggest
that the observed electrical modifications are due both
to the introduction of negative fluorine ions (as already
reported in the literature) but also to the plasma-
induced damage.
The near-surface modification induced by a RTO pro-

cess was also monitored by combining TEM and scan-
ning probe microscopy techniques.
Figure 5 shows the TEM images of the oxidized

sample. Combining the bright field image (a) with the
oxygen map acquired by EFTEM (energy-filtered trans-
mission electron microscopy) analysis (b) allowed to
demonstrate the presence of a surface oxide layer of
a thickness of about 2 nm grown after the process at
900°C. Previous experiments on long-term oxidation
have shown the formation of a mixed oxide of Al2O3 -
Ga2O3 with a high chemical stability with respect to wet
etching [11].
The nanoscale electrical properties of the thin oxide

formed by the RTO process were monitored by C-AFM
(reported in Figure 6).
Similarly to the case of the sample treated with

plasma, also in the oxidized sample we prepared a

sample for local electrical characterization. The sample
consisted of regions (stripes) of locally oxidized material
alternating with non-oxidized material. As can be seen,
while the morphology of the oxidized regions remains
practically unchanged with respect to the non-oxidized
ones (Figure 6a), the current flow through the 2DEG
was locally suppressed in the oxidized regions, which in
turn exhibit a more resistive behaviour (Figure 6b).
Hence, this selective local oxidation process can be

potentially useful to tailor the electrical properties of
AlGaN barrier layers and/or as a novel approach for
recessed-gate or insulated-gate technology for normally-
off GaN HEMTs.

Conclusion
In summary, a nanoscale approach was used to monitor
the impact of near-surface processing on the electrical
and structural properties of AlGaN/GaN heterostruc-
tures. The introduction of defects and/or negative
charges by the CHF3 into the GaN (or AlGaN/GaN het-
erostructure) was deduced by TEM and C-AFM and can
be indicated as the main cause of the depletion of the
2DEG and shift of the threshold voltage in HEMT
devices.
A local increase of the resistivity was observed by

a rapid thermal oxidation of the sample, which led to
the formation of a very thin surface oxide. In this per-
spective, the nanoscale comprehension of the effects

Figure 5 TEM images of the oxidized sample. Bright field TEM analysis (a) and EFTEM (b) for oxygen on a sample oxidized by RTA at 900°C
for 10 min.
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associated to the CHF3 plasma treatment and to oxida-
tion processes can be useful to design and fabricate nor-
mally-off devices, with an insulated gate technology.
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Figure 6 Nanoscale electrical properties of the thin oxide formed by the RTO process monitored by C-AFM. AFM image (a) and C-AFM
image (b) of stripes on surface of AlGaN by RTA oxidized at 900°C for 10 min.
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