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Abstract

Manganese materials with attractive optical properties have been proposed for applications in such areas as
photonics, light-emitting diodes, and bioimaging. In this paper, we have demonstrated multicolor Mn2+

luminescence in the visible region by controlling Ce3+-Mn2+ energy transfer in rare earth nanocrystals [NCs]. CeF3
and CePO4 NCs doped with Mn2+ have been prepared and can be well dispersed in aqueous solutions. Under
ultraviolet light excitation, both the CeF3:Mn and CePO4:Mn NCs exhibit Mn2+ luminescence, yet their output colors
are green and orange, respectively. By optimizing Mn2+ doping concentrations, Mn2+ luminescence quantum
efficiency and Ce3+-Mn2+ energy transfer efficiency can respectively reach 14% and 60% in the CeF3:Mn NCs.

Introduction
The preparation of fluorescent nanomaterials continues
to be actively pursued in the past decades. The poten-
tially broad applicability and high technological promise
of the fluorescent nanomaterials arise from their intrin-
sically intriguing optical properties, which are expected
to pale their bulk counterparts [1-4]. Particularly, con-
trollable energy transfer in the nanomaterials has been
receiving great interest because it leads luminescence
signals to outstanding selectivity and high sensitivity,
which are important factors for optoelectronics and
optical sensors [5].
Great efforts have been devoted to Mn2+-doped semi-

conductor nanocrystals [NCs] due to their efficient sensi-
tized luminescence [6,7]. When incorporating Mn2+ ions
in a quantum-confined semiconductor particle, the Mn2+

ions can act as recombination centers for the excited
electron-hole pairs and result in characteristic Mn2+

(4T1-
6A1)-based fluorescence. Compared with the

undoped materials, the Mn2+-doped semiconductor NCs
often have higher fluorescence efficiency, better photo-
chemical stability, and prolonged fluorescence lifetime.
Therefore, such Mn2+-doped NCs have recently been
proposed as bioimaging agents [8,9] and recombination

centers in electroluminescent devices [10,11]. They may
even find applications in future spin-based information
processing devices [12,13] and have been examined as
models for magnetic polarons [14]. Moreover, as emis-
sion centers, Mn2+ ions can be used for the synthesis of
long persistent phosphors [15,16], and white-light ultra-
violet light-emitting diodes [17], when doped in inorganic
host materials (such as silicate, aluminate, and fluoride).
Rare earth ions (such as Ce3+ and Eu2+) have been com-

monly used as sensitizers to improve Mn2+ fluorescence
efficiency in bulk materials [18-20]. Typically, the efficient
room temperature [RT] luminescence were reported in the
Mn2+, Ce3+ co-doped CaF2 single crystal and other
matrixes, which were assigned to the energy transfer from
the Ce3+ sensitizers to the Mn2+ acceptors through an elec-
tric quadrupole short-range interaction in the formed Ce3+-
Mn2+ clusters [18]. However, a portion of isolated Ce3+ and
Mn2+ ions which are randomly dispersed in the host
usually causes a low Ce3+-Mn2+ energy transfer efficiency.
In this work, we have synthesized the CeF3:Mn and

CePO4:Mn NCs and investigated the Ce-Mn energy
transfer in these representative rare earth NCs. Upon
UV light excitation, both the CeF3:Mn and CePO4:Mn
show bright Mn2+ luminescence in the visible region.
Their fluorescence output colors, however, are quite dif-
ferent owing to different host crystal structures. The
optimum Mn2+ doping concentration has been found at
which the Mn2+ luminescence quantum efficiency and
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Ce3+-Mn2+ energy transfer efficiency peak at 14% and
60% in the CeF3:Mn NCs, respectively.

Experimental section
Materials
Reagents MnCl2 (>99%), TbCl3 (>99%), CeCl3 (>99%),
NH4F (>99%), and H3PO4 (>85%) were obtained from Sino-
pharm Chemical Reagent Co., Ltd. (Beijing, China). Poly-
ethylenimine [PEI] (branched polymer (-NHCH2CH2-)x
(-N(CH2CH2NH2)CH2CH2-)y) was purchased from Sigma-
Aldrich (St. Louis, MO, USA). All reagents were used as
received without further purification.

Synthesis of CeF3:Mn nanocrystals
CeF3 NCs were synthesized using a modified method
reported previously [21]. In a typical procedure, x mL of
0.2 M MnCl2 and (0.2 - x) mL of 0.2 M CeCl3 were added
to 15 mL of ethanol with 5 mL of PEI solution (5 wt.%).
After stirring for 30 min, an appropriate amount of NH4F
was charged. The well-agitated solution was then trans-
ferred to a Teflon-lined autoclave and subsequently heated
at 200°C for 2 h. After cooling down, the product was iso-
lated by centrifugation, washed with ethanol and deionized
water several times, and dried in vacuum.

Synthesis of CePO4:Mn nanocrystals
In a typical procedure, x mL of 0.2 M MnCl2 and (12-x)
mL of 0.2 M CeCl3 were mixed. The mixture was agi-
tated for 10 min, then charged with 5 mL of 0.5 M
H3PO4, and eventually placed under ultrasonic irradia-
tion for 2 h. All ultrasonic irradiations were performed
in a water bath with an ultrasonic generator (100 W, 40
kHz; Kunshan Ultrasonic Instrument Co., Shanghai,
China). The particles were obtained by centrifugation,
washed with ethanol and deionized water several times,
and dried in vacuum.

Physical and optical measurements
The transmission electron microscopy [TEM] measure-
ments were carried out on a JEOL 2010 HT transmis-
sion electron microscope (operated at 200 kV). X-ray
diffraction [XRD] analyses were performed on a Bruker
D8-advance X-ray diffractometer with Cu Ka irradiation
(l = 1.5406 Å). The absorption spectra were obtained
with a Varian Cary 5000 UV/Vis/NIR spectrophot-
ometer. The photoluminescence [PL] and PL excitation
[PLE] spectra were recorded by a Hitachi F-4500 fluor-
escence spectrophotometer with a Xe lamp as the exci-
tation source.

Results and discussion
Morphology and structure
Both the CeF3:Mn and the CePO4:Mn NCs were synthe-
sized by effective hydrothermal processes. The prepared

CeF3:Mn NCs are shaped as hexagonal plates with aver-
age sizes of ~25 nm, as shown by the TEM image in
Figure 1a. Figure 1b demonstrates CePO4:Mn nanowires
with an average diameter of ~8 nm and an average
length of ~400 nm.
Figure 2 shows XRD spectra of CeF3:Mn and CePO4:

Mn NCs. The XRD pattern of the CeF3:Mn NCs shows
that all the peak positions are in good agreement with
the literature data of the hexagonal CeF3 crystal, and the
peak positions exhibited by the CePO4:Mn NCs are well
indexed in accord with the hexagonal CePO4 crystal,
revealing high crystallinity of these two kinds of
products.

Absorption spectra
As shown in Figure 3, the CeF3:Mn NCs exhibit four
absorption peaks located at 248, 235, 218, and 205 nm,
which are attributed to the electronic transitions from
the ground state to different 5d states of the Ce3+ ions.
The above absorption peaks’ wavelength of the CeF3:Mn
NCs are in good agreement with those reported for

Figure 1 TEM images. TEM images of CeF3:Mn (a) and CePO4:Mn
(b) NCs.
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CeF3 bulk crystals [22]. The CePO4:Mn NCs exhibit two
absorption bands with peaks at 256 and 273 nm [23].
The two bands are overlapped because the excited state
is strongly split by the crystal field [24]. We note that
the Mn2+ 6A1g(S)-

4Eg(D) and
6A1g(S)-

4T2g(D) absorption
transitions from 310 to 350 nm [18] in these NCs are
not obvious due to the much weaker Mn2+ absorption
ability and low Mn2+/Ce3+ ratio in the host.

Photoluminescence properties
Figure 4a schematically depicts the Ce3+-Mn2+ energy
transfer process in the CeF3:Mn NCs, which efficiently
induces a bright green luminescence under UV irradia-
tion at RT. The RT PL emission spectra (with excitation
wavelength lex = 260 nm) of the CeF3:10%Mn NCs con-
tain not only the strong Mn2+ emission at 498 nm but
also the Ce3+ emission at 325 nm. As known, the Mn2+
6A1g(S)-

4Eg(D) and
6A1g(S)-

4T2g(D) absorption transition

is respectively at 325 and 340 nm [18]; both of these
absorption bands are overlapped by the Ce3+ emission.
This overlap facilitates the energy transfer from Ce3+ to
Mn2+, resulting in the characteristic 4T1g(G)-6A1g(S)
emission of Mn2+ [25,26]. Such Ce3+-Mn2+ energy trans-
fer is induced by the electric dipole-quadrupole interac-
tion between the Ce3+ sensitizers and Mn2+ acceptors
[19]. Furthermore, in Figure 4a, only the RT excitation
peak ascribed to the Ce3+ 4f-5d transition can be
observed at 260 nm, while the Mn2+ characteristic peaks
cannot be witnessed because the Mn2+ absorption tran-
sitions are forbidden by spin and parity for electric
dipole radiation as T > 200 K [27]. Since the RT Mn2+

luminescence is very difficult to be found in the transi-
tion-metal concentrated materials like MnF2 [27], the
Ce3+-Mn2+ energy transfer offers an efficient route for
obtaining Mn2+ RT luminescence in nanomaterials.
Similarly, the Ce3+-Mn2+ energy transfer process in

the CePO4:10%Mn NCs triggers an orange luminescence
under UV irradiation (Figure 4b). The emission spectra
of the CePO4:Mn upon excitation at 260 nm contain
both the Ce3+ emission at 355 nm and the Mn2+ orange
emission around 575 nm arising from the 4T1g(G)- 6A1g
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Figure 2 XRD spectra. XRD spectra of CeF3:Mn and CePO4:Mn NCs.
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Figure 3 Absorption spectra attributed to electronic
transitions. Absorption spectra of CeF3:Mn and CePO4:Mn NCs.

Figure 4 PLE and PL spectra. PLE and PL spectra of CeF3:Mn (a)
and CePO4:Mn (b) NCs.
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(S) transition of Mn2+. As known, the luminescence out-
put color of the Mn2+ ions is strongly dependent on the
coordination environment of the host lattice, such as
the strength of the ligand field and the coordination
number. The green emission of Mn2+ ions at about 500
nm is usually obtained in a weak crystal field environ-
ment where Mn2+ is usually four or eightfold [27,28]. In
contrast, the CePO4 NCs have a monazite structure in
which the dopant ions are probably ninefold and in a
stronger crystal field environment [29]. Thus, the orange
emission can be observed in our synthesized CePO4:Mn
NCs. We note that the CePO4:Mn NCs synthesized are
rodlike particles whose shape is greatly different from
the platelike CeF3:Mn NCs due to the different growth
behavior. To eliminate the influence of the particle
shape on the luminescence output color of Mn2+ ions,
we have further synthesized rodlike hexagonal phase
NaYF4:Ce,Mn NCs using our established method [21] in
which the Ce3+-Mn2+ energy transfer also results in
green Mn2+ luminescence at 500 nm (data not shown).

Quantum efficiency and energy transfer efficiency
The Mn2+ luminescence quantum efficiency (hQE) was
determined by comparing the Mn2+ emission intensity
of the CeF3:Mn aqueous solution with a solution of
quinine bisulfate in 0.5 M H2SO4 with approximately
the same absorption at an excitation wavelength of 260
nm [30]. It is important that all the sample solutions
were sufficiently diluted (absorption value of 0.03 at
260 nm) to minimize the possible effects of reabsorp-
tion and other concentration effects [31]. The hQE of
the CeF3:Mn NCs increases significantly and reaches
14% as the doped Mn2+ molar concentration increases
to 2%. The decreased hQE at Ce3+ concentrations
above 2% is probably due to the increased Mn2+↔Mn2+

energy migration which weakens the Ce3+-Mn2+ energy
transfer. We note that the highest hQE we obtained
is similar to that of the Ce, Tb co-doped LaF3 NCs
reported previously [32].
The Ce3+-Mn2+ energy transfer efficiency (hET) was

estimated from the emission intensity ratio IMn/(ICe +
IMn) when the sample solutions were sufficiently diluted
and the energy loss caused by the re-absorption effects
between different particles could be neglected [31,33].
As shown in Figure 5a, a high hET of 60% is observed in
the CeF3:Mn NCs while the Mn2+ doping concentration
is over 10%. We note that the IMn is much weaker than
the ICe in the previously reported Mn,Ce co-doped CaF2
and other bulk materials because of a portion of ran-
domly dispersed Ce3+ and Mn2+ ions beyond the inter-
action distance for the short-range energy transfer
[19,34]. In our CeF3:Mn NCs, the Ce3+-Mn2+ clusters
are easily formed and result in the efficient Ce3+-Mn2+

energy transfer.

By using the method discussed above, we have also
investigated the hQE and hET of the CePO4:Mn2+ NCs in
the presence of different Mn2+ concentrations (Figure 5b).
Upon doping with the increasing concentrations of Mn2+,
both the hQE and hET increase firstly, and the hQE reaches
the peak at 0.6% when the Mn2+ doping concentration is
10%. It is worth noting that both the hQE and hET in the
CeF3:Mn NCs are higher than those in the CePO4:Mn
NCs. Compared with phosphates, fluorides normally have
lower vibrational energies, which can decrease the quench-
ing of the excited state of rare earth ions [35] and result in
higher quantum efficiency. Besides, the energy transfer
efficiency between the sensitizers and acceptors is influ-
enced greatly by the interaction distance of these dopant
ions [19,36]. Here, the less energy transfer efficiency in
CePO4:Mn is probably attributed to the larger interaction
distance between the Ce3+ and Mn2+ ions. A further
increase of the quantum efficiency and energy transfer effi-
ciency is possible by applying an undoped inorganic shell
as a protective layer.
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Figure 5 Investigated hQE and hET. Mn2+ luminescence quantum
efficiency (hQE) and Ce3+-Mn2+ energy transfer efficiency (hET) vs.
molar percent of Mn2+ in CeF3:Mn (a) and CePO4:Mn NCs (b).
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Conclusions
The sensitized Mn2+ luminescence has been realized
based on the Ce3+-Mn2+ energy transfer in the prepared
Mn2+-doped rare earth NCs. The 4T1g(G)-6A1g(S) char-
acteristic emission of Mn2+ reveals green luminescence
in CeF3:Mn and orange luminescence in CePO4:Mn,
resulting from the crystal field differences of these two
hosts. We worked out that the highest Mn2+ lumines-
cence quantum efficiency can reach 14% and 0.6% in
the CeF3:Mn and CePO4 NCs, respectively. Our results
may find applications in the manipulations of the Ce3+-
Mn2+ energy transfer for redox switches [37] and
broadly impact areas such as photonics, light-emitting
diodes, and bioimaging based on manganese materials.
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