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Abstract

The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs) were investigated using a
conductive-probe atomic force microscopy (AFM). Horizontal SiNWs, which were synthesized by the in-plane solid-
liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local
current mapping shows that the wires have internal microstructures. The local current-voltage measurements on
these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge
limited conduction which can be assisted by traps in the high-bias regime (> 1 V). Vertical phosphorus-doped
SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly
n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip
and the SiNW was put in evidence, and the SiNWs resistivity was estimated.

Introduction
Silicon nanowires (SiNWs) are promising nanostructures
which are expected to be integrated in building blocks
for future microelectronics and optoelectronics devices
[1-3]. Indeed, multiple studies have already shown the
great potential of SiNWs as functional element to
develop transistors [4], biosensors [5], memory applica-
tions [6], and as electrical interconnects [7]. In addition,
SiNWs offer an interesting geometry for light trapping
and carrier collection which gives place to intensive
investigations in the photovoltaic field [8,9].
Several approaches and strategies exist to grow,

deploy, and assemble SiNWs [10,11]. In order to guide
them, and more specifically to control the electrical
properties of SiNWs, it is required to characterize their
electronic transport properties.
Conductive-probe atomic force microscopy (CP-AFM)

[12] reveals itself as a powerful current sensing techni-
que for electrical characterizations in small-scale tech-
nologies, which could help us to explore the electrical
properties and to reveal local conductivity fluctuations
in SiNWs.

In this study, the authors focus on the CP-AFM charac-
terization of horizontal SiNWs produced via in-plane
solid-liquid-solid (IPSLS) method and phosphorus-doped
vertical SiNWs obtained through vapor-liquid-solid
(VLS) technique. Local resistance mapping and local
current-voltage (I-V) measurements have been performed
to evaluate the electrical properties of such semiconduct-
ing SiNWs.

Experimental details
Silicon nanowires
Horizontal SiNWs
The IPSLS [10,13,14] approach, using indium (In) cata-
lyst droplets and a hydrogenated amorphous silicon (a-
Si:H) layer, was used to grow horizontal SiNWs. More
precisely, In catalyst droplets were prepared by superfi-
cial reduction of an indium tin oxide (ITO) layer, which
was then coated by an a-Si:H layer. The growth activa-
tion of SiNWs is done during an annealing process at
temperatures in the range of 300-500°C. The mechanism
for obtaining horizontal SiNWs is guided by the liquid
In drop which interacts with the predeposited a-Si:H
transforming it into crystalline SiNWs. Figure 1a illus-
trates a scanning electron microscopy (SEM) image of a
horizontal Si wire of 400-nm diameter which extends
over one hundred of microns. The In catalyst is still
visible at the end of the wire.
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Vertical SiNWs
n-Type phosphorous-doped SiNWs were grown by che-
mical vapor deposition through the gold-catalyzed VLS
method as described in [15,16], on n-type silicon sub-
strates (3-5 mΩ cm). The SiNW growth temperature
was in the range of 500-650°C, and the n-type doping
was achieved by adding PH3 to SiH4, with PH3/SiH4

ratios which can vary from 0 to 2 × 10-2. Subsequent to
the growth, the catalyst was removed, and in some
cases, a rapid thermal annealing at 750°C for 5 min was
done to activate dopant impurities. SiNWs were then
embedded into spin-on-glass matrix in order to be pla-
narized by chemical-mechanical polishing [16].
Table 1 describes the samples that were electrically

analyzed by CP-AFM. The samples were grown at the
same temperature (500°C), and they differentiate them-
selves on the nominal doping concentration. Figure 1b
illustrates a sample of vertical SiNWs on n-type Si wafer
with diameters in the range of 50-100 nm. The length
of wires after planarization was estimated around 1 μm.

Conductive-probe atomic force microscopy
Local electrical measurements were performed using a
Digital Instruments Nanoscope IIIa Multimode AFM
associated with the home-made conducting probe exten-
sion called “Resiscope” [12]. This setup allows us to
apply a stable DC bias voltage (from -10 to +10 V with
0.01 V resolution) to the device and to measure the
resulting current flowing through the tip as the sample
surface is scanned in contact mode. Local resistance

values can be measured in the range of 102-1012 Ω,
which allows investigations on a variety of materials
[17,18] and devices [19,20]. Measurement accuracy
based on calibrations is below 3% in the range of 102-
1011 Ω, and it can reach 10% for higher resistance
values.
Reliable and understandable electrical measurements

through CP-AFM setup require a well-characterized
conductive tip. Depending on the experimental condi-
tions, the AFM conductive tip should be the most suita-
ble in terms of serial resistance that must be taken into
account in the electrical analysis of SiNWs. B-doped
diamond- and PtIr-coated Si cantilevers, with an inter-
mediate spring constant of about 2 N/m, prove to be
suitable for our experimental conditions, since measured
resistance values are mostly greater than their intrinsic
resistances that are estimated at 5-10 and 0.3-1 kΩ,
respectively.
The CP-AFM details and more specifically the sample

configuration and biasing are displayed in Figure 2. In
case of horizontal SiNWs, the DC bias voltage was
applied to the ITO pad, while for vertical SiNWs it was
applied through the doped silicon wafer.

Results and discussion
Horizontal SiNWs
Figure 3 shows a large AFM scan illustrating the topo-
graphy and electrical image properties of the sample
structure based on an ITO pad (bottom of the image)
from the border of which in-plane nanowires are

Figure 1 SEM picture illustrating(a) a single horizontal Si wire and (b) a carpet of vertical SiNWs.

Table 1 Sample description of vertical SiNWs analyzed by the CP-AFM technique

Sample name Growth temp. (°C) Description Post-annealing treatment Nominal impurity concentration

CD-08-001 500 Undoped SiNWs/n-type Si (100) - Undoped

CD-08-125 500 Doped SiNWs/n-type Si (100) 5 min at 750°C [P] ≈ 1 × 1018 cm-3

CD-08-021 500 Doped SiNWs/n-type Si (100) 5 min at 750°C [P] ≈ 1 × 1020 cm-3
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distinguishable. In addition, the topography allows it to
point out long channels that were dug during the
growth of SiNWs. Nevertheless, these long channels are
empty and indeed they are not electrically discernable
from the insulating a-Si:H layer that surrounds the
wires. On the contrary, SiNWs show electrical conduc-
tivity when the wires are not broken or disconnected
from the ITO pad.
In Figure 4, a 20 × 20 μm2 surface scan which displays

the topography and the electrical properties of a micro-
meter-wide horizontal silicon oval shaped wire (1 μm wide
and 300 nm thick) is presented. The topography points out

an inhomogeneous surface morphology that is clearly con-
firmed by the local mapping of resistance. Indeed, conduc-
tive paths along the wire are put in evidence and linked to
the topographic features of the wire envelope. The accuracy
of these features depends essentially on convolution effects
associated to the AFM tip shape. It seems reasonable that
several SiNWs have been produced and have partially con-
tributed to the growth of this long and wide silicon wire
[10] explaining the electrical and surface microstructure.
In the same figure, the empty growth channel result-

ing from the unexpected cut of the wire with the AFM
probe can also be noticed. Broken pieces of silicon

Figure 2 Sketch illustrating the details of CP-AFM measurements on (a) horizontal and (b) vertical SiNWs.
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Figure 3 40 × 40 μm2 surface map illustrating the topography (left side) and the local resistance (right side) of horizontal SiNWs
grown from In droplets obtained after reduction of ITO.

Figure 4 Topography and local resistance maps illustrating a micrometer-wide horizontal silicon wire. The electrical image was obtained
under a bias of 2 V.
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remaining in the channel reveal a slight electrical con-
duction (1011 Ω) although they are electrically isolated
through the undoped a-Si:H layer (1012 Ω). Possible
explanations are that the whole surface of the remaining
piece of silicon in contact with the a-Si:H layer fully
contributes to decrease the electrical contact resistance
or that the friction of the AFM tip induces charging
effects which are electrically observable.
Horizontal SiNWs have also been characterized under

different applied voltages. As illustrated in Figure 5, the

local resistance maps were measured in the same region
at 2, 6, and 10 V, respectively. The analysis of the elec-
trical images points out a local resistance that decreases
in function of the applied voltage. More specifically, the
local resistance of SiNWs measured at 2 V decreases
one order of magnitude at 6 V and two orders of mag-
nitude at 10 V. Such behavior was also observed for
negative applied biases. An interesting observation
comes from the high bias regime (V > 2 V) which
underlines the increase of local resistance of the wire

Figure 5 Topography and local resistance maps depicting horizontal SiNWs randomly oriented. The electrical measurements were done
at different applied biases: 2, 6, and 10 V.
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versus its length. However, high bias regime can also
broaden the electrical images of wires.
In order to get more precise information about the

variation of the local resistance in function of the
applied bias, CP-AFM was locally used for investigating
the I-V characteristics on individual SiNWs. Figure 6
displays a log-log plot of the I-V characteristics where
two identifiable slopes are put in evidence. Indeed, the
analysis of the slopes following a power-law dependence
(I ∝ Vn) allows us to estimate two transport regimes
with a transition around 1 V. The slope n = 1.6 (V < 1
V) points out charge injection which is a characteristic
of a space-charge limited current (SCLC) [21]. The
slope n = 3 (V > 1 V) indicates a trap-limited SCLC,
that can be analyzed in the frame of a trap distribution
with an increasing density of states toward the band
edge. Interface and surface states in low-dimensional
semiconductors such as nanowires are expected to be
the most common defects, which greatly influence the
electrical transport properties [22]. We also should keep
in mind that SiNWs were here obtained thanks to an a-
Si:H layer that is known to possess a quite large density
of states in the gap, with exponential band tails.

Vertical SiNWs
Figure 7 depicts a 10 × 10 μm2 surface map that illus-
trates, from left to right, the topography and the electri-
cal properties of undoped SiNWs (CD-08-001). The
brightest spots (highest features) in the topography
image represent the SiNWs which are generally well
correlated with the conductive blue spots in the electri-
cal image. However, the zoom (4.2 × 4.2 μm2) allows it
to point out several examples of SiNWs which are not
electrically conductive (dot-line circle) as distinct from
those showing conductive properties (full-line circle).

The oxide formation and the AFM tip loading force are
possible reasons that could explain that SiNWs appear
insulating in native.
The three samples were carefully imaged, and a statistic

was made in a few tenths of SiNWs. An example of
cross-sectional profiles involving SiNWs is illustrated in
Figure 8. The conducting wires are easily put in evidence
with a decrease of the local resistance by several orders
of magnitude with respect to the background signal. For
the most highly doped sample, the local resistance of the
SiNW drops by more than six orders of magnitude,
whereas the intermediate doped and undoped samples
show a decrease of four and three orders of magnitude,
respectively. These measurements clearly point out that
the SiNWs conductivity can be controlled by the incor-
poration of phosphorus impurities. However, the phos-
phorus doping efficiency and activation cannot be
directly discussed through such measurements. Resistiv-
ity measurements are indeed required.
As illustrated in Figure 9, local I-V measurements

were performed for each sample on top of the SiNW
using a PtIr AFM tip. All the three samples show a lin-
ear behavior with inverse slopes of 1.9-2.3 × 108, 5.3-6.7
× 106, and 4.5-10 × 104 Ω, respectively, for the undoped,
1 × 1018 and 1 × 1020 for the doped samples. These
values illustrate the total measured resistance Rtot which
can be decomposed as follows:

R R R R Rtot AFMtip tip/SiNW SiNW back≈ + + + , (1)

where RAFMtip is the intrinsic resistance of the AFM tip,
Rtip/SiNW refers to the contact resistance involving the
AFM tip and the SiNW, RSiNW designates the intrinsic
resistance of the SiNW, and Rback the back contact resis-
tance between the highly doped silicon wafer and the
SiNW. The intrinsic resistance of the SiNW (RSiNW) is
given by rl/S where r, l, and S are the resistivity, the
length of the wire, and the wire sectional area, respectively.
The presence of contact resistance often implies the pre-

sence of a barrier which gives rise to diode-like behavior
or sigmoidal I-V characteristics. In some cases, a linear
dependence on applied bias can be measured indicating
that the barrier resistance involved in the contact resis-
tance can be neglected. The contact resistance only con-
sists then in a geometrical resistance which depends on
the electrical radius [23]. In order to estimate the geome-
trical resistance, the Wexler resistance model [24,25] was
used, which describes the transition between the diffusive
and ballistic transport regimes in constricted contacts.
Wexler formula is described as

R
a
K

a
KW = +4

3 2



 Γ( ), (2)Figure 6 I-V measurement on individual SiNW measured by
CP-AFM.
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Figure 7 Surface scan illustrating the topography (left) and the local resistance (right) performed on undoped vertical SiNWs (CD-08-
001). Image zoom shows several examples of electrically conductive (full-line circle) and non-conductive (dot-line circle) SiNWs.

Figure 8 Height and local resistance profile involving single SiNWs for different phosphorus doping levels : (a) undoped, (b) [P] ≈ 1 ×
1018 cm-3, and (c) [P] ≈ 1 × 1020 cm-3.
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where K = l/a is the ratio of the carrier mean free
path, l, to the electrical radius, a, and Γ(K) is a monoto-
nous function that takes the value 1 at K = 0 and
decreases slowly reaching the limit of 0.694.
For the estimation of Rtip/SiNW, the electrical radius was

chosen equal to 10 nm, and the electron mean free path
in the range 1-80 nm assuming bulk silicon values. From
these calculations, the resistivity values were estimated to
be in the range of 20-40 Ω cm for the undoped sample,
0.1-1.2 Ω cm for the intermediate doped sample, and
0.008-0.016 Ω cm for the highly doped sample. In terms
of electrically active phosphorus, it corresponds to 1-2 ×
1014, 0.5-7 × 1016, and 2-6 × 1018 cm-3, respectively.
These values, extracted from bulk silicon values, indicate
that the phosphorus incorporation is not fully activated
despite the thermal anneal activation at 750°C. Recent
results of CP-AFM show that phosphorus activation in
SiNWs is enhanced at higher temperatures growth (T >
500°C) without the need of post-annealing treatment.
From the point of view of the CP-AFM measurements

more accurate resistivity measurements could be
achieved in the future making a pre-calibration of the
technique using standard doped silicon wafers [26].

Conclusion
In this study, CP-AFM was used to electrically charac-
terize horizontal and vertical SiNWs. CP-AFM techni-
que reveals itself as a powerful tool for sensing current
inhomogeneities that were observed in horizontal
SiNWs pointing out an internal microstructure. In addi-
tion, local I-V measurements allowed us to put in

evidence a SCLC transport regime that could be assisted
by traps.
The effect of phosphorus doping on the local contact

resistance was evidenced for vertical SiNWs, and resis-
tivity values were estimated indicating that phosphorus
incorporation was not fully activated.
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