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Abstract

Background: The clinical applicability of time-resolved 3D flow cardiovascular magnetic resonance (CMR) remains
compromised by the long scan times associated with phase-contrast imaging. The present work demonstrates the
applicability of 8-fold acceleration of Cartesian time-resolved 3D flow CMR in 10 volunteers and in 9 patients with
different congenital heart diseases (CHD). It is demonstrated that accelerated 3D flow CMR data acquisition and
image reconstruction using k-t PCA (principal component analysis) can be implemented into clinical workflow
and results are sufficiently accurate relative to conventional 2D flow CMR to permit for comprehensive flow
quantification in CHD patients.

Methods: The fidelity of k-t PCA was first investigated on retrospectively undersampled data for different
acceleration factors and compared to k-t SENSE and fully sampled reference data. Subsequently, k-t PCA with 8-fold
nominal undersampling was applied on 10 healthy volunteers and 9 CHD patients on a clinical 1.5 T MR scanner.
Quantitative flow validation was performed in vessels of interest on the 3D flow datasets and compared to 2D
through-plane flow acquisitions. Particle trace analysis was used to qualitatively visualise flow patterns in patients.

Results: Accelerated time-resolved 3D flow data were successfully acquired in all subjects with 8-fold nominal scan
acceleration. Nominal scan times excluding navigator efficiency were on the order of 6 min and 7 min in patients
and volunteers. Mean differences in stroke volume in selected vessels of interest were 2.5 ± 8.4 ml and 1.63 ± 4.8 ml
in volunteers and patients, respectively. Qualitative flow pattern analysis in the time-resolved 3D dataset revealed
valuable insights into hemodynamics including circular and helical patterns as well as flow distributions and origin
in the Fontan circulation.

Conclusion: Highly accelerated time-resolved 3D flow using k-t PCA is readily applicable in clinical routine protocols
of CHD patients. Nominal scan times of 6 min are well tolerated and allow for quantitative and qualitative flow
assessment in all great vessels.
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Background
Acquiring time-resolved whole heart 3D phase contrast
cardiovascular magnetic resonance (CMR) with flow
encoding in three spatial dimensions is limited by its
intrinsically long scan times [1]. This results in trade-offs
between spatial and temporal resolutions and/or tolerating
potential breathing motion artefact when acquiring the
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data in a clinical routine setting [2]. However, the ability
of time-resolved 3D CMR to assess flow volumes, pulse
wave velocities [3], pressure gradients [4], wall shear stress
[5-7] and turbulent kinetic energy [8,9] requires high
spatial and temporal resolution. Knowledge about the high
degree of redundancy in phase contrast velocity data has
fuelled efforts to acquire Cartesian undersampled time-
resolved data using parallel imaging or a combination of
parallel imaging and spatiotemporal constraints [10-12].
These techniques have been limited by temporal blurring
artefacts when using undersampling factors larger than 5
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in both time-resolved 3D [13-15] and 2D phase-contrast
CMR [11,16]. Recent improvements of reconstruction
algorithms dedicated to phase-contrast imaging have
enabled acceleration factors greater than 5 for 3D
phase-contrast CMR of the carotid bifurcation [17].
Non-Cartesian time-resolved 3D flow CMR and non-
linear constrained reconstruction techniques have also
been proposed with net acceleration factors of 2-5 [18,19].
Especially due to the long scan times of 3D flow
CMR, single slice through-plane phase-contrast imaging
(time-resolved 2D flow CMR) in combination with parallel
imaging often remains the method of choice for flow mea-
surements in clinical protocols [20]. A 2D scan can be
targeted to specific vessels and can be acquired during a
breath-hold or during free shallow breathing with several
signal averages to reduce breathing motion artefacts.
Apart from only acquiring through-plane blood velocities
in a single slice, a practical limitation of this technique
relates to time-consuming slice planning, in particular in
congenital heart disease (CHD) patients. Although the
image analysis of 3D flow CMR remains time-consuming
[21], the possibility of retrospectively adapting planes
within the 3D volume is of great advantage [22].
In this work, highly undersampled Cartesian time-

resolved 3D images were acquired covering the entire
heart and surrounding vessels and reconstructed using
the previously presented k-t PCA [23] algorithm in com-
bination with a sparsifying transform [17]. The technique
was applied on retrospectively undersampled data using
different acceleration factors in order to allow direct eva-
luation of acceleration effects with respect to flow values
derived from fully sampled data. In addition to determin-
ing optimal scan parameters for the prospectively under-
sampled acquisitions, the retrospectively undersampled
data were compared to k-t SENSE reconstructions. Using
a nominal acceleration factor of 8, the technique was
then combined with respiratory gating and applied to
10 healthy volunteers and 9 patients with congenital
heart diseases (CHD) on a clinical 1.5 T CMR scanner.
Quantitative flow analysis was performed in vessels of
interest and compared to time-resolved 2D through-plane
flow acquisitions for validation. Particle trace visualisation
was used to qualitatively assess flow patterns in patients.

Methods
Data acquisition
The study protocol was reviewed and approved by the
institutional ethics committee (10/H0802/65)’ and writ-
ten informed consent was obtained from all participants
or their parents. Data were obtained on a 1.5 T Achieva
System (Philips Healthcare, Best, The Netherlands) using
a 5 channel array cardiac coil in volunteers and a 2-5
channel array coil in CHD patients (depending on pa-
tient size).
Similar to previous k-t acceleration validation studies
[11,12], a reference 3D flow dataset with a k-t factor of 1
was first acquired (using standard SENSE x 2), resulting
in a nominal scan time of 25 minutes. Scan parameters
are listed in Table 1 and further included a flip angle of
6°, a repetition and echo time of 4.5 ms and 2.5 ms
respectively and a velocity encoding range (venc) of
250 cm/s. A symmetric four-point encoding scheme [24]
was used for all time-resolved 3D flow acquisitions.
This fully sampled dataset was used to investigate the
accuracy of the presented k-t PCA reconstruction as
compared to a k-t SENSE reconstruction. Different nom-
inal k-t undersampling factors ranging from 2 to 12 were
simulated.
In 10 healthy volunteers (mean age: 28.6 years, range:

23-40 years) and 9 CHD patients (mean age: 5.9 years,
range: 0.6-21 years), 3D flow data were then acquired
using a nominal acceleration factor of 8 with 11 and 7
training profiles along both phase encoding directions
and reconstructed using k-t PCA. Partial Fourier sampling
was not used. The venc was chosen to match the expected
peak velocity in the heart and surrounding vessels. The
entire heart and all surrounding vessels of interest were
covered by the field-of-view. In all subjects, prospective
ECG triggering was used. Scan parameters are listed in
Table 1. In volunteers, 24 heart phases corresponded to an
acquired temporal resolution of 35.6 ± 5.3 ms (no tem-
poral interpolation was used). Breathing motion was mon-
itored using a pencil-beam navigator placed on the dome
of the right hemi-diaphragm played out at the beginning
of each ECG cycle. A gating window of 3-5 mm was used
resulting in navigator efficiencies on the order of 40-50%
in volunteers and, due to a more regular breathing during
general anaesthesia, of 50-70% in patients.
In all volunteers and patients, time-resolved 2D through-

plane encoded flow data were acquired during free breath-
ing and with retrospective ECG gating using a clinically
validated acquisition protocol [25]. To reduce breathing
motion artefacts, 2-3 signal averages were acquired in all
time-resolved 2D flow acquisitions. Sequence parameters
further included: TR/TE = 4.5/2.8 ms, spatial resolution =
2.5×2.5 mm2, 30 heart phases, slice thickness: 7 mm, Flip
angle: 15 deg. The venc was chosen to match the maximum
velocity in the vessel of interest. In volunteers, flow was
quantitatively assessed in the ascending aorta (AAo), the
main branch pulmonary artery (MPA), the left and right
pulmonary arteries (LPA and RPA) and the superior vena
cava (SVC). In patients, the area of flow quantification
varied depending on the CHD type.

Reconstruction
Clinically validated time-resolved 2D flow data were re-
constructed on-line and included concomitant field and
eddy current correction provided by the manufacturer.



Table 1 Vessels of interest and phase contrast acquisition parameters

# CHD 2D flow 3D flow Age GA

Vessels of interest (venc [cm/s]) Spatial res.
[mm3]

# Phases
(Δt [ms])

FoV [mm3] venc
[cm/s]

Scan time
[min]

0 Volunteers AAo (200), MPA (200), RPA (200), LPA (200), SVC (100) 2.5×2.5×2.5 24 320×320×140 200 5.6 29 y no

1 HLHS (I) AAo (200), LPA (150), RPA (200) 2.5×2.5×1.75 32 (17) 140×70×200 400 3.6 11 m yes

2 ToF AAo (200), MPA (150) 1.78×1.61×2.5 24 (33) 200×280×100 200 5.2 21 y no

3 HLHS (II) AAo (250), DAo (150), LPA (70), RPA (70), SVC (70) 1.26×1.61×1.79 24 (21) 141×180×79 200 5.2 2 y yes

4 HLHS (III) AAo (200), LPA (80), RPA (80), SVC (80), IVC (80) 2×1.4×2 24 (37) 208×320×130 150 7.1 11 y yes

5 DILV (III) AAo (200), LPA (80), RPA (80), SVC (80), IVC (80), Fen (150) 1.18×1.71×1.72 24 (24) 151×220×95 150 6.8 3 y yes

6 HLHS (II) AAo (200), Dao (200), LPA (80), RPA (80), SVC (80) 2.08×2.08×2.08 24 167×300×94 200 5.1 7 m yes

7 HLHS (III) AAo (150), Dao (150), LPA (80), RPA (80), SVC (80), IVC (80) 2.31×2.31×2.31 32 203×370×115 150 7.6 9 y yes

8 HLHS (II) AAo (200), Dao (200), LPA (80), RPA (80), SVC (80) 2.08×2.08×2.08 24 167×300×94 120 5.8 2.5 y yes

9 HLHS (II) AAo (200), Dao (200), LPA (80), RPA (80), SVC (80) 2.08×2.08×2.08 24 167×300×94 130 5.2 3 y yes

Scan parameters. HLHS (I-III): Hypoplastic Left Heart Syndrome after step I, II or III of the Fontan procedure, ToF: Tetralogy of Fallot, DILV: Double Inlet Left Ventricle.
Nominal scan times excluding navigator efficiency are given. GA: general anaesthesia.
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Time-resolved 3D flow data were reconstructed using
k-t PCA [23] in combination with a sparsifying trans-
form [17]. To this end, the fully sampled low-resolution
training and the undersampled data were transformed
using a complex difference operator prior to k-t PCA
reconstruction. Subsequently, data were transformed into
their spatial-temporal frequency representations and tem-
poral basis functions were derived from the training data
using principal component analysis (PCA). Data unfolding
was performed using a weighted least-squares approach
[23]. Resulting phase maps were corrected for concomi-
tant field and eddy current related phase offsets [26-28].
The reconstruction code was implemented in C and
reconstruction times for 3D flow data were on the order
of 2 minutes on a 12 core CPU cluster, depending on
matrix size, number of heart phases and number of coil
elements.
For comparison, the retrospectively undersampled ref-

erence dataset was also reconstructed using k-t SENSE.
Post-processing
Images were analysed offline using GTFlow (GyroTools
LLC, Zurich, Switzerland). Contours were manually drawn
to segment vessels of interest. In order to avoid misalign-
ment due to subject motion all vessels were contoured
separately on the 3D flow datasets. Flow curves and stroke
volumes derived from time-resolved 3D and 2D flow data
were then compared.
Data analysis
Retrospective undersampling
The time-average of the cumulated absolute flow rate
error ER (in ml/s) with respect to the reference dataset
was calculated for different reconstruction factors R:
ER ¼ 1
np

Xtnp

t¼0

Q1 tð Þ−QR tð Þj j

Where Q1(t) and QR(t) correspond to the flow rates
through the vessel of interest in the dataset with a k-t
undersampling factor of 1 and R respectively at the time-
point t. np corresponds to the number of time-frames.
This error metric provides the cumulated flow error (over
time), making it more sensitive to potential undersampling
artefacts such as temporal blurring.
Particle trace analysis was performed by counting the

percentage of particles emitted from a contour within
the ascending aorta and reaching a second contour in
the descending aorta.

Prospective undersampling
Flow rates from undersampled time-resolved 3D flow
datasets were compared to time-resolved 2D flow rates
by quantifying stroke volumes in the vessels of interest.
The error in [ml] was calculated as:

ESV ¼
Xnp;2DΔt2D

t¼0

Δt2DQ2D tð Þ−
Xnp;3DΔt3D

t¼0

Δt3DQ3D tð Þ

Where Q2D(t) and Q3D(t) correspond to flow rates of
the time-resolved 2D and 3D flow data and Δt2D, Δt3D
to their temporal resolutions.
As the peak flow rate is expected to be more sensitive

to temporal blurring, the values extracted from the
volunteers’ datasets in the ascending aorta were also
compared between 2D and 3D acquisitions.
In CHD patients, the time-resolved 3D flow datasets

were further qualitatively analysed using particle path
visualisation.
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Results
Retrospective undersampling
Figure 1a shows flow curves retrospectively under-
sampled with a k-t acceleration factor of R = 4, 8 and 10
along with the reference flow curve (R = 1). Datasets
were reconstructed using k-t SENSE (top row) and k-t
PCA (bottom row). The accumulated flow error for both
reconstructions as a function of the acceleration factor is
shown in Figure 1b. Figure 1c shows the percentage of
particles detected at the level of the descending aorta,
emitted from the ascending aorta as a function of the
undersampling factor for k-t SENSE and k-t PCA
reconstructions.

Volunteer study
A correlation and Bland-Altman analysis of all stroke
volumes derived from 2D flow acquisitions and under-
sampled 3D flow data reconstructed using k-t PCA are
shown in Figure 2. Linear regression resulted in a cor-
relation coefficient of R2 = 0.93 and the Bland-Altman
analysis revealed an underestimation of stroke volume
Figure 1 Undersampling simulation results. a) Retrospectively undersam
acceleration factors along with data from the fully sampled reference (R = 1
for k-t SENSE (full lines) and k-t PCA (dotted lines). An acceleration factor o
c) Percentage of particles ejected from the ascending aorta reaching the d
by 2.5 ± 8.4 ml with 3D flow corresponding to 5.6 ± 14.9%
with respect to the stroke volumes derived from the 2D
flow datasets. Peak flow rates from the 3D datasets
showed an underestimation by 5.1 ± 7.5% with respect to
the 2D datasets.

CHD patients
Flow comparison between stroke volumes extracted from
time-resolved 2D flow and undersampled time-resolved
3D flow reconstructed using k-t PCA revealed an under-
estimation using 3D flow of 1.6 ± 4.8 ml summarising all
vessels which corresponded to 18.1 ± 33.3% of the stroke
volumes derived from the time-resolved 2D flow data
(Figure 2). Vessels with a stroke volume over 20 ml showed
a deviation of 2.8 ± 14.5% and vessels with a stroke volume
under 20 ml showed a deviation of 23.4 ± 36.4%.

Qualitative analysis
As shown in Table 1, the present study contained 5
different types of CHDs: 7 patients with Hypoplastic Left
Heart Syndrome (HLHS), one patient with Tetralogy of
pled and reconstructed data using k-t SENSE and k-t PCA for different
). b) Accumulated flow errors as a function of the acceleration factor
f 8 (grey vertical line) was chosen for all prospective acquisitions.
escending aorta as a function of the acceleration factor.



Figure 2 Bland-Altman stroke volume analysis. Bland-Altman plot comparing stroke volumes extracted from 2D flow and highly accelerated
3D flow data in volunteers (left) and patients (right).
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Fallot (ToF) and one patient with a Double Inlet Left
Ventricle (DILV). In patients with HLHS and DILV, simi-
lar surgery was performed consisting of the Norwood I
procedure (Blalock-Taussig shunt connecting the left sub-
clavian artery with the pulmonary arteries), followed by a
procedure leading to the Hemifontan stage (grafting of the
SVC onto the pulmonary arteries) and the final surgery
leading to the Fontan stage (connection of SVC and IVC
with the pulmonary arteries). These stages are denoted by
I-III in Table 1. Figure 3 shows screenshots of particle
trace visualisations in patients of each CHD category and
stage of Fontan procedure. Corresponding movies are in-
cluded in the Additional files 1, 2, 3, 4, 5, and 6. Patient
numbers correspond to the numbering in Table 1. In each
figure, the main vessels of interest as well as main blood
flow directions (arrows) are annotated. Patient #1 with
Hypoplastic Left Heart Syndrome (HLHS) in the first
stage of surgery shows strong circular flow from the
Blalock-Taussig shunt into the RPA and LPA. It shows that
Figure 3 Pathline screenshots. Particle traces ejected from different vesse
for detail). Corresponding movies can be found in the Additional files.
the main fraction of emitted particles is ejected into the
RPA leading to an uneven distribution between RPA and
LPA flow volumes. Particles released from the AAo are
further observed to enter the subclavian artery and the
shunt with velocities reaching 2 m/s. Patient #2 (Tetralogy
of Fallot) shows severe pulmonary regurgitation during
early diastole. In patient #3 (HLHS, Hemifontan) circular
flow is observed at the level of the branching of the
pulmonary arteries. The bulk flow from the SVC follows a
laminar flow into the RPA leading to an uneven flow dis-
tribution between LPA and RPA. Particles ejected from the
AAo further show a circular flow pattern due to the con-
nection of native- and neo-aorta. Patient #4 (HLHS, fenes-
trated cavo-pulmonary connection Fontan) shows
an uneven flow distribution into RPA and LPA (bulk
flow into the RPA) and circular flow into the Fontan
branching of SVC, IVC, RPA and LPA. Particles ejected
below the level of the fenestration show systolic flow
through the fenestration into the left atrium. In patient
ls of interest in 5 CHD patients show different flow patterns (see text
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#5 (Double Inlet Left Ventricle (DILV) with fenestrated
cavo-pulmonary connection Fontan) high velocity (1 m/s)
flow is observed through the fenestration. Similar to
patient #4, circular flow is observed into the Fontan circu-
lation due to the confluence of flow from SVC and IVC
being redirected into LPA and RPA.

Discussion
The presented results demonstrate the potential of highly
accelerated time-resolved 3D flow in a clinical setting. In
patients, the nominal scan times of the time-resolved 3D
flow acquisition covering the entire heart and great vessels
were on the order of 6 min resulting in a total net scan
time of 8 min depending on breathing navigator efficiency
and cardiac frequency. Image reconstruction times were
below 3 min and hence the overall protocol could be well
established during clinical workflow. Although similar
scan times have been achieved recently, previous data
were acquired with a smaller field of view [15], lower
temporal resolutions in combination with interpolation
[18] or with a 100% gating efficiency tolerating breathing
motion artefacts [29].
The results also show that k-t PCA is able to recon-

struct highly undersampled data even with low receive
channel count (5-channel coil used in volunteers, 2-5
channel coils used in patients) providing flexibility in
selecting appropriate coils also in smaller and young
patients. While the channel count is not critical in the
present application, it is noted that large coil arrays are
becoming increasingly available for frame-to-frame par-
allel imaging methods.
A nominal acceleration factor of 8 was used although

the retrospective results in this study showed that using
k-t PCA with an undersampling factor of 10 might also
be feasible. In volunteers, flow curves compared well
between accelerated time-resolved 3D flow data and time-
resolved 2D flow data with stroke volume deviations of
2.5 ± 8.4 ml in line with previous studies [2,30].
k-t BLAST was not assessed in this study as it is known

to be more susceptible to temporal blurring [10,11].
Besides the quantitative validation, the present study has

also demonstrated that valuable qualitative hemodynamic
patterns can be extracted from the time-resolved 3D flow
dataset.
Flow rates are known to be very sensitive to global

phase offsets [31]. Although care has been taken to
correct for eddy current related phase offsets, a limited
signal to noise ratio and lack of static tissue in some
areas can compromise background phase fitting and in-
terpolation. Phase offsets affect both time-resolved 2D
flow and 3D flow in different ways due to differences in
sequence parameters [32].
Another potential source of error is attributed to the

delineation of vessel contours [33,34]. As magnitude
image contrast is often reduced in time-resolved 3D flow
data mainly due to the lack of inflowing unsaturated
blood, a correct delineation of the vessel border can be
challenging, especially for small, venous vessels.
An important drawback of the four-point time-resolved

3D flow acquisitions lies in the limited velocity-to-noise
ratio in vessels with small velocities [35]. Since the value
of the venc has to be set to match the maximum expected
velocity in the entire volume, smaller velocities are mea-
sured with less accuracy. This is reflected in the large
standard deviation of over 30% of the stroke volumes as
measured in the patients if all vessels were included in the
analysis. If only vessels with a stroke volume larger than
20 ml are considered, the standard deviation is reduced to
15.2%. Errors in the high flow vessels (mainly arterial)
therefore agree well with findings in volunteers. Especially
in CHD patients, the velocity range in the different vessels
can be very large. By using a multi-point acquisition
[36,37] at the expense of longer scan times, this drawback
can be alleviated leading to higher velocity-to-noise ratios
in vessels with low flow.
Finally, since prospective triggering and navigator

based gating was used for 3D flow CMR, the first and
last 20 ms of early systole and late diastole could not be
sampled. The impact on stroke volume calculations is
especially important when high flow is present in early
systole or late diastole and in cases with strong cardiac
cycle variability. The use of self-navigation techniques in
combination with a retrospective k-t sampling scheme
might alleviate this issue.

Conclusions
In summary, this work has demonstrated that the acqui-
sition and reconstruction of undersampled Cartesian 3D
flow CMR is feasible in a clinical setting. The straight-
forward planning process of time-resolved 3D flow ac-
quisition is of great value in complex CHD anatomies.

Additional files

Additional file 1: Pathline movie - Norwood I procedure. Posterior
view of the aortic arch including subclavian artery and Blalock-Taussig-Shunt
of patient 1 (HLHS after Norwood I procedure). Particles are released in the
ascending aorta and the shunt.

Additional file 2: Pathline movie – Tetralogy of Fallot. Antero-lateral
view of the main pulmonary artery of patient 2 (Tetralogy of Fallot).
Particles are released in the main pulmonary artery during the entire
cardiac cycle.

Additional file 3: Pathline movie - Hemifontan. Posterior view of the
thoracic aorta, superior vena cava and left and right pulmonary arteries of
patient 3 (HLHS Hemifontan). Particles are release in the ascending aorta
and all three branches of the Hemifontan circulation.

Additional file 4: Pathline movie – Fontan (a). Posterior view of the
Fontan circulation in patient 4 (HLHS with fenestrated cavo-pulmonary
connection Fontan). Particles are released in the superior vena cava,
inferior vena cava and the left and right pulmonary arteries.

http://www.biomedcentral.com/content/supplementary/1532-429X-16-42-S1.mp4
http://www.biomedcentral.com/content/supplementary/1532-429X-16-42-S2.mp4
http://www.biomedcentral.com/content/supplementary/1532-429X-16-42-S3.mp4
http://www.biomedcentral.com/content/supplementary/1532-429X-16-42-S4.mp4
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Additional file 5: Pathline movie – Fontan (b). Anterior view of the
Fontan circulation in patient 4 (HLHS with fenestrated cavo-pulmonary
connection Fontan). Particles are released below the fenestration in the
inferior vena cava as well as inside the Fontan connection.

Additional file 6: Pathline movie – DILV Fontan (1a). Anterior view of
the Fontan circulation in patient 5 (DILV with fenestrated cavo-pulmonary
connection Fontan). Particles are released below the fenestration in the
inferior vena cava as well as in the superior vena cava.

Abbreviations
PCA: Principal component analysis; BLAST: Broad-use linear acquisition
speed-up technique; SENSE: SENSitivity encoding; CHD: Congenital heart
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ventricle; AAo: Ascending aorta; DAo: Descending aorta; MPA: Main
pulmonary artery; RPA: Right pulmonary artery; LPA: Left pulmonary artery;
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(shunt from Fontan tunnel into right atrium).
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